不同的惯导材料定义方法不同,混着看很容易把自己弄得迷迷糊糊。最近发现一篇不错的文章,本着学术无界的思想,没有使用积分下载,网盘链接附在文末。
该材料中第43页介绍方向余弦矩阵与欧拉角关系中,有一些备忘补充如下:
如图所示右手系, X O Y XOY XOY平面绕 Z Z Z轴逆时针旋转一个角度 ψ \psi ψ,此时可得到:
[ x 2 y 2 z 2 ] = [ c o s ψ s i n ψ 0 − s i n ψ c o s ψ 0 0 0 1 ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right] = \left[ \begin{matrix} cos\psi & sin\psi & 0\\ -sin\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] ⎣⎡x2y2z2⎦⎤=⎣⎡cosψ−sinψ0sinψcosψ0001⎦⎤⎣⎡x1y1z1⎦⎤
同样,如果绕 X X X轴逆时针旋转 θ \theta θ,如图所示:
此时可得到:
[ x 2 y 2 z 2 ] = [ 1 0 0 0 c o s θ s i n θ 0 − s i n θ c o s θ ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} 1 & 0 & 0\\ 0 & cos\theta & sin\theta \\ 0 & -sin\theta & cos\theta \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] ⎣⎡x2y2z2⎦⎤=⎣⎡1000cosθ−sinθ0sinθcosθ⎦⎤⎣⎡x1y1z1⎦⎤
但是对于很多初学者来说,往往因为忽视右手系,导致在递推绕
Y
Y
Y轴旋转的矩阵时出错。
绕
Y
Y
Y轴逆时针旋转
γ
\gamma
γ,如图所示:
此时如果不考虑
Y
Y
Y轴,只考虑
Z
O
X
ZOX
ZOX平面内关系,则有
[
z
2
x
2
]
=
[
c
o
s
γ
s
i
n
γ
−
s
i
n
γ
c
o
s
γ
]
[
z
1
x
1
]
\left[ \begin{matrix} z_2 \\ x_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & sin\gamma \\ -sin\gamma & cos\gamma \end{matrix} \right] \left[ \begin{matrix} z_1 \\ x_1 \\ \end{matrix} \right]
[z2x2]=[cosγ−sinγsinγcosγ][z1x1]
即
[ x 2 z 2 ] = [ c o s γ − s i n γ s i n γ c o s γ ] [ x 1 z 1 ] \left[ \begin{matrix} x_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & -sin\gamma \\ sin\gamma & cos\gamma \end{matrix} \right] \left[ \begin{matrix} x_1 \\ z_1 \\ \end{matrix} \right] [x2z2]=[cosγsinγ−sinγcosγ][x1z1]
因此对于三维坐标系下有:
[ x 2 y 2 z 2 ] = [ c o s γ 0 − s i n γ 0 1 0 s i n γ 0 c o s γ ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & 0 & -sin\gamma\\ 0 & 1 & 0 \\ sin\gamma & 0 & cos\gamma \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] ⎣⎡x2y2z2⎦⎤=⎣⎡cosγ0sinγ010−sinγ0cosγ⎦⎤⎣⎡x1y1z1⎦⎤
不同的旋转前提条件下,矩阵不同。“惯性导航基本原理(刘保中)—9.1方向余弦与方向余弦矩阵”第43页中绕Y轴旋转是在右手系顺时针的前提下,注意!
资源:
附上文中所提材料链接:惯性导航基本原理(刘保中)-资料汇总页中下载