003备忘补充之惯性导航基本原理(刘保中)---9.1方向余弦与方向余弦矩阵

不同的惯导材料定义方法不同,混着看很容易把自己弄得迷迷糊糊。最近发现一篇不错的文章,本着学术无界的思想,没有使用积分下载,网盘链接附在文末。


该材料中第43页介绍方向余弦矩阵与欧拉角关系中,有一些备忘补充如下:

绕Z轴逆时针旋转

如图所示右手系, X O Y XOY XOY平面绕 Z Z Z轴逆时针旋转一个角度 ψ \psi ψ,此时可得到:

[ x 2 y 2 z 2 ] = [ c o s ψ s i n ψ 0 − s i n ψ c o s ψ 0 0 0 1 ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right] = \left[ \begin{matrix} cos\psi & sin\psi & 0\\ -sin\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] x2y2z2=cosψsinψ0sinψcosψ0001x1y1z1

同样,如果绕 X X X轴逆时针旋转 θ \theta θ,如图所示:

绕X轴逆时针旋转

此时可得到:

[ x 2 y 2 z 2 ] = [ 1 0 0 0 c o s θ s i n θ 0 − s i n θ c o s θ ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} 1 & 0 & 0\\ 0 & cos\theta & sin\theta \\ 0 & -sin\theta & cos\theta \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] x2y2z2=1000cosθsinθ0sinθcosθx1y1z1

但是对于很多初学者来说,往往因为忽视右手系,导致在递推绕 Y Y Y轴旋转的矩阵时出错。
Y Y Y轴逆时针旋转 γ \gamma γ,如图所示:

绕Y轴逆时针旋转

此时如果不考虑 Y Y Y轴,只考虑 Z O X ZOX ZOX平面内关系,则有
[ z 2 x 2 ] = [ c o s γ s i n γ − s i n γ c o s γ ] [ z 1 x 1 ] \left[ \begin{matrix} z_2 \\ x_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & sin\gamma \\ -sin\gamma & cos\gamma \end{matrix} \right] \left[ \begin{matrix} z_1 \\ x_1 \\ \end{matrix} \right] [z2x2]=[cosγsinγsinγcosγ][z1x1]

[ x 2 z 2 ] = [ c o s γ − s i n γ s i n γ c o s γ ] [ x 1 z 1 ] \left[ \begin{matrix} x_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & -sin\gamma \\ sin\gamma & cos\gamma \end{matrix} \right] \left[ \begin{matrix} x_1 \\ z_1 \\ \end{matrix} \right] [x2z2]=[cosγsinγsinγcosγ][x1z1]

因此对于三维坐标系下有:

[ x 2 y 2 z 2 ] = [ c o s γ 0 − s i n γ 0 1 0 s i n γ 0 c o s γ ] [ x 1 y 1 z 1 ] \left[ \begin{matrix} x_2 \\ y_2 \\ z_2 \end{matrix} \right]= \left[ \begin{matrix} cos\gamma & 0 & -sin\gamma\\ 0 & 1 & 0 \\ sin\gamma & 0 & cos\gamma \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \\ z_1 \end{matrix} \right] x2y2z2=cosγ0sinγ010sinγ0cosγx1y1z1

不同的旋转前提条件下,矩阵不同。“惯性导航基本原理(刘保中)—9.1方向余弦与方向余弦矩阵”第43页中绕Y轴旋转是在右手系顺时针的前提下,注意!


资源:
附上文中所提材料链接:惯性导航基本原理(刘保中)-资料汇总页中下载

学术不需要积分!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值