图像增强技术总结

最近科研需要改进算法,需要先对图像进行增强后处理,所以对图像增强技术做一个总结。图像增强的目的就是要提高图像的质量,在图像处理中,有两种提高图像质量的方法:一是图像在采集的过程中,知道图像质量降低的原因,根据原因进行图像恢复,图像复原等处理,二是不管图像质量降低的过程,针对图像本身增强,后者就是本文讨论的内容。

图像增强处理技术基本上可以分成两大类,一类是空域处理方法,一类是频域处理方法。

一、方法分类

1、空域处理方法

在这里插入图片描述

(1)点运算

针对空间上的某些像素进行处理,点运算中包含灰度的线性变换灰度的非线性变换灰度直方图

①灰度直方图

比如对一个八位的灰度图像,每一个像素是256个灰度级(0~255),我们把图像中灰度级作为横坐标,纵坐标使用在某一个灰度级上的像素个数(或者是某一个像素出现的频度)

整个图像是N x N像素,

P r ( r ) = n ( r ) N P_{r}(r)=\frac{n(r)}{N} Pr(r)=Nn(r)

(2)领域运算

领域运算包含对图像进行平滑,或者滤波

2、频域处理方法

对f(x,y)图像进行频率变换,傅里叶变换或者其他类型变换,得到一个频域函数。对频域函数进行滤波处理,然后进行反变换,得到一个处理后的图像g(x,y)

二、目的和效果分类

对于一副图像,图像的高频部分图像变化快对应图像细节和边缘部分
图像的低频表示图像变化缓慢部分

1、平滑

保持和加强图像的低频成分,滤出或减少高频成分

可以使用空域的方法或邻域的方法

2、锐化

增强图像中高频成分,减少或降低低频成分,突出图像的细节和边缘信息

可以使用空域的方法或邻域的方法

三、颜色分类

1、灰度增强

2、彩色增强

灰度直方图:对一幅数字图像,若对应于每-灰度值,统计出具有该灰度值的象素数,并据此绘出象素数-灰度值图形,则该图形称该图像的灰度直方图,简称直方图。

直方图是以灰度值作横坐标,象素数作纵坐标。有时直方图亦采用某一灰度值的象素数占全图总象素数的百分比(即某一灰度值出现的频数)作为纵坐标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客范儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值