━═━═━◥ AI ◤━═━═━
文章平均质量分 64
极客范儿
技术决定下限,审美决定上限
展开
-
使用asyncio实现并发
一、实验内容采用Pytorch完成手写数字识别程序,数据集为MNIST,分别采用全连接神经网络和卷积神经网络进行实验,经过调试参数,查看训练误差曲线的变化。画出卷积神经网络的特征层,并保存为图片。二、运行结果2.1 全连接神经网络实现(1)代码实现:import torchimport numpy as npfrom torchvision.datasets import mnistfrom torch import nnfrom torch.autograd import Variabl原创 2022-02-14 15:30:25 · 997 阅读 · 0 评论 -
2021“华为杯”第十八届中国研究生数学建模竞赛有感
研究生的数学建模比赛是硕士研究生和博士研究生一起竞赛,对比本科参加的大学生数学建模竞赛天壤之别,难度和复杂度不可同日而语,竞争压力之大也不可想象,不过因为兴趣还是参加了。这次搭配上不需要妹纸(并不是),一个组最好有一个女生,但也只是建议,毕竟实验室的三个工科男搭配的也有模有样。今年的比赛时间是2021.10.14日8:00至20201.10.18日12:00,10月13日下载试题了,开赛前仔细阅读了参赛手册和规范。今年的题目专业性都很强,先就把题目定下,模型选一下,三个人一起做,大家选择看看做哪个题目原创 2021-10-19 22:06:53 · 2232 阅读 · 2 评论 -
利用波士顿房价数据集实现房价预测
文章目录一、 观察波士顿房价数据并加载数据集1、加载数据集二、 特征选择三、 模型选择四、 模型训练和测试1、 训练模型2、打印线性方程参数3、模型预测4、 计算mae、mse5、 画出学习曲线五、 模型性能评估和优化1、 模型优化,考虑用二项式和三项式优化2、 划分数据集函数3、定义MAE、MSE函数4、定义多项式模型函数5、 训练模型6、 定义画出学习曲线的函数7、定义1、2、3次多项式8、划分数据集9、训练模型,并打印train score10、画出学习曲线六、 结论与分析一、 观察波士顿房价数据并原创 2021-10-19 12:30:09 · 8777 阅读 · 4 评论 -
用SVM分类模型处理iris数据集
一、实验简介:本次数据集很经典,实验本身是基于SVM支持向量机技术对数据集Iris进行特征分类。实验采取Sklearn函数库来实现SVM,并使用SVM对提取好的特征进行分类,结果的展示方面进行了数据可视化保证观测结果清晰可见。首先,Iris数据集的中文名是安德森鸢尾花卉数据集,Iris包含150个样本,对应数据集的每行数据。每行数据包含每个样本的四个特征和样本的类别信息,所以iris数据集是一个150行5列的二维表形式的样本,被应用于多类模型的实验当中。还需要进一步介绍数据集的内容:数据集当中,每个样原创 2021-10-09 21:52:40 · 4509 阅读 · 0 评论 -
深入浅出聊机器学习西瓜书
精读西瓜书才了解西瓜书的由来,原来里面机器学习的例子都是拿西瓜举例啊。一、机器学习的原理对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序从经验E中学习。这个经验实际就是数据。机器学习就是把现实世界当中要研究的对象通过特征值将其数字化,然后让计算机通过这些已有的数字学习经验,即训练,得到判断能力即模型。例子:1、垃圾邮件识别/过滤:假定你的email程序观察到,哪些邮件被你标记为垃圾邮件,基于这个内容机器学习到了怎样更好的识别过滤垃圾邮原创 2021-09-08 21:25:45 · 1923 阅读 · 0 评论 -
使用TensorBoard将图可视化
文章目录一、数据序列化成events文件二、启动TensorBoard三、总结TensorFlow可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了更方便TensorFlow程序的理解、调试和优化,TensorFlow提供了TensorBoard可视化工具。以a、b两数的和为例。一、数据序列化成events文件import tensorflow as tfdef events_demo(): a = tf.constant(20,name='a') b原创 2021-08-31 14:48:14 · 398 阅读 · 0 评论 -
2021第三届全球互联网通信云大会有感
融云总部就在北京,第三届WICC终于开回来了。很荣幸代表公司参加大会,对印象深刻的点做一些总结。互联网音视频基础架构:云-边-端协同,是这次三位演讲离不开的话题,以视频为代表的富媒体信息称为主流。现在的通信云社会分工,难全球化,有比特信息服务加持能更好的运作。早期考虑成本,后期考验能力。现在音视频是通信上很关注的点,信息都是从低维上高纬转化的。以音视频为基础,赋能各个场景。音视频与各行各业带来格局变化,教育、电商、办公三个方面与音视频擦除不一样的火花,同时行业需求在不断变化。智能赢家创造了广阔的空间,一原创 2021-07-24 21:39:20 · 258 阅读 · 2 评论 -
python环境下xgboost的安装与使用
XGboost(eXtreme Gradient Boosting)属于有监督学习,是Gradient Boosting模型的一种改进版,在国外的Kaggle,国内的Kesci、天池、DataCastle等平台上的数据比赛中应用十分广泛,更加取得了非常不错的成绩。XGboost在Python、R、Java等多种语言中都有相应的实现版本,一下以Python为例,介绍python环境下xgboost的安装与使用。XGboost的项目托管在Github上,XGBoost官网介绍了如何在Mac、Linux、Win原创 2021-07-20 14:57:39 · 3209 阅读 · 0 评论 -
第二届Techo TVP 开发者峰会有感
2017年对Serverless感受不大,到2018年Serverless热度很好,这次ServerlessDays China 2021有一说一,虽然抽奖跟午餐透露着活动方的贫穷,但是皓叔的演讲还是干货满满的,不虚此行。鹅厂确实厉害了,避免太黑盒,难调试,门槛高等传统Serverless调试痛点,支持云端函数调试,Serverless,Empower More。以前对无服务的理解停留在fass技术,进一步理解serverless技术架构,成长路线为:单体→微体→serverless技术架构。serve原创 2021-06-05 20:40:00 · 281 阅读 · 1 评论 -
Computex 2021 NVIDIA 主题演讲有感
英伟达的新款显卡RTX 3070 Ti和3080Ti终于来了。没有意外,70ti是锁算力了,在这波矿潮中,两张新卡仍然限制挖矿效率。虽然这两款显卡都支持Nvidia的所有光线追踪、DLSS和Reflex技术,但是对这两款新空气显卡,这些价格在上市后应该会进行调整,但不要指望它们接近建议零售价,只能选择“躺平”。现在年轻人更倾向于电子游戏作为他们最喜欢的娱乐活动,据估计《我的世界(Minecraft)》的开放世界已经发展到40亿平方公里,是地球面积的8倍,Valve刚刚宣布,将以2021 DOTA冠军联赛提原创 2021-06-02 20:38:25 · 268 阅读 · 1 评论 -
2018年度学习总结
一年时间,深度学习从自学的小白,到入了门,会训练模型,处理各种数据,调参优化等。在这过程中,学习了很多论文,也翻译了不少文章。从应用角度来说,如果说2016年是深度学习统治互联网之年,机器翻译、聊天机器人、数据中心、云服务,包括Google、Amazon、Facebook、微软、IBM在内的各大技术巨头都在不遗余力地推进深度学习的研发和应用。那么剖析CNN句子分类任务,训练各种模型,2018年就是...原创 2018-09-10 19:00:10 · 2139 阅读 · 2 评论 -
Jetson TX2开发板运行jetson-inference出现问题的解决办法
根据github上Nvidia深度学习教程在使用git clone jetson-inference命令到Jetson TX2后,,执行cmake ../后是出现nvidia.app.box.com连接,然后一直重复连接,提供两种解决方案。分析问题: 1.在执行cmake ../ 命令时,需要执行jetson-inference下的CMkeList.txt,编译CMkeList.txt时要...原创 2018-05-08 18:12:11 · 2699 阅读 · 9 评论 -
参与深度学习超级计算机DGX系列产品研讨会的感受
本科阶段的毕业设计是在Jetson TX2上跑的,公司做深度学习涉及DGX,有幸参与此次英伟达组织的DGX workshop学习下。官方的说法是DGX Workshop dedilcated to Robotics for Jetson Xavier and Isaac。不过现场既没有半价开发板也没有尺子,更没有Xavier实物,纯粹的DGX和Jetson TX2的深度交流,不过干货也不少。 两...原创 2018-07-17 20:05:34 · 870 阅读 · 0 评论 -
NVIDIA自主机器人与深度强化学习解读
李博士对自助机器人和深度强化学习有了更新的解读,对印象深刻的做个总结。 不同产业、不同工业,机器人外形差别很大。主要部件:控制单元——控制中心(大脑),能动单元——行走的部分。 传统机械手臂没办法理解到其他手臂的空间范围,目前的工业机器人可以在机械手臂上加入传感器,实现人机协作。 今天的机器人,需要更多的智能:目标检测+目标识别定制化开发标定和前期校准当环境变化不...原创 2018-07-25 20:58:23 · 1195 阅读 · 0 评论 -
NVIDIA AT SIGGRAPH 2018的体会
老黄诚不欺我,果然有重量级产品发布。年度SIGGRAPH大会是计算机图形学领域的盛会,今年大会将在加拿大温哥华举办,虽不能直接参会,但是现场直播也能身临其境的了解一下行情。对留下深刻印象的地方做一个总结。 SIGGRAPH 2018是世界领先的年度跨学科的学术大会,向世界展示最新的计算机图形和互动技术成果,还包括具有广度和深度的经典栏目“计算机动画节”中的“电子剧场”和新设立的“VR影院”。 ...原创 2018-08-14 09:39:22 · 859 阅读 · 0 评论 -
NVIDIA Jetson开发者交流会有感
作为英伟达在2018年首场交流会,干货颇多。深度学习、神经网络等做了一些演示,第一次大会难免有些讲解偏底层。刚开始进行签到,到场的都能拿到N的纪念杯。 NVIDIA分享了技术趋势,Jetson TX2,Retail介绍及初创加速计划。然后介绍Jetpack新功能,Deepstream在Jetson平台上的实现及TensorRT的新特性。然后是合作伙伴分享,其次是讨论提问环节,最后是自...原创 2018-01-23 23:25:53 · 2255 阅读 · 0 评论 -
APP进阶实战:最快10分钟接入HUAWEI HiAI有感
华为HiAI是面向移动终端的AI计算平台,了解HUAWEI HiAI的平台功能、优势、技术以及HUAWEI HiAI能为APP带来的价值,为开发者提供人工智能计算库及API,助力开发者便捷高效地编写在移动设备上运行的人工智能应用程序。有助于对于投身人工智能领域的移动端应用开发者;对Huawei移动计算平台感兴趣的开发者;对AI和移动端应用感兴趣的开发者,所以对于移动应用方向也偏爱人工智能的开发...原创 2018-08-07 21:25:54 · 3968 阅读 · 1 评论 -
Python全栈数据工程师养成攻略
近年来大数据(BigData)的概念获得不行,python已经成为机器学习热门的工具。anaconda把与python有关的库(numpy,scipy等等)都打成一个包。pycaffe 的安装以及 notebook 环境配置是为了更方便的去使用深度学习框架。notebook 使用浏览器作为界面使用,可以编写和执行 python 代码。 从个人角度出发,在时间有限和资源有限的条件下,实现一...原创 2018-08-03 14:30:27 · 1426 阅读 · 0 评论 -
NVIDIA JETSON开发者交流会北京第二场感想
北京第二场开发者交流会,这次身份却有了不同。很荣幸代表中国开发者第一次和Xavier零距离接触。Xavier这块板子最大的优点是共享内存的同时,将1/4泰坦V揉了进去, 瓦数也差不多1/4的泰坦V 。在计算过程中不再需要像PC一样将数据以每秒2~6GB的速度考入显存 10秒内的综合处理时间稳赢泰坦V,价格也只是泰坦V的一半。其他的编译上的优势就不知道了。这性能肯定是报表级别的。对印象深刻的地方做一...原创 2018-08-16 21:11:32 · 529 阅读 · 0 评论 -
四天2018世界机器人大会带来的感触
十年后服务机器人一定是满足人类生活需求走进家庭。同时,家庭机器人在提供人类生活服务的同事,又可以通过互联网云计算大数据为整个人类和消费者提供社会商业服务(也包括社会的公共服务!) 例如,佳通机器人在家里知道你的习惯爱好,等你去了商场或者餐馆,也会即刻先收到有针对性的个性化服务。 2018世界机器人大会以 “共创智慧新动能,共享开放新时代 ” 为主题,由论坛、博览会、大赛、地面无人系统活动四大板...原创 2018-08-19 16:30:30 · 1003 阅读 · 0 评论 -
总结GTC TAIWAN 2018主题演讲
本次演讲老黄虽然没有放出新核弹的消息,但是亮点依旧很多,令我印象深刻的地方做一个简短总结。 NVidia医学影响平台Clara,和之前在哈工大的开发者交流会医学使用B超X光技术的应用很相似,人工智能可以更好地应用于医疗这是不错的发展。 Google将原生TensorRT4整合到TensorFlow。 超人规模推论非常困难,“PLASTER”Programmability...原创 2018-05-30 14:43:46 · 1242 阅读 · 0 评论