Deep Learning
文章平均质量分 64
极客范儿
技术决定下限,审美决定上限
展开
-
采用全连接神经网络和卷积神经网络完成手写数字识别的区别
深度学习实验一、实验内容采用Pytorch或者Keras完成手写数字识别程序,数据集为MNIST,分别采用全连接神经网络和卷积神经网络进行实验,经过调试参数,查看训练误差曲线的变化。画出卷积神经网络的特征层,并保存为图片。二、运行结果2.1 全连接神经网络实现(1)代码实现:import torchimport numpy as npfrom torchvision.datasets import mnistfrom torch import nnfrom torch.autograd原创 2021-12-29 16:02:29 · 640 阅读 · 0 评论 -
python加载mnist数据集
在Nvidia Digits上用tensorflow框架直接拿来使用的mnist数据集十分方便,现在为了究竟,使用Python直接实现加载mnist数据集。from tensorflow.example.tutorials.mnist import input_dataimport tensorflow as tf#加载数据集mnist = input_data.read_data_sets('E:/soft/MNIST_DATA',one_hot=True)#加载训练集样本tran_x = m原创 2021-08-10 11:07:26 · 3636 阅读 · 0 评论 -
Matlab实现时间序列预测
Matlab从2010b版本以后,神经网络工具箱已经升级为7.0,功能大大加强。在之前的版本做时间预测是比较麻烦操作的,MathWorks公司对时间序列预测做了详细的解决,跑模型非常简便。当前网络是非常的非线性网络,增加神经元个数,同时增加delays到4。利用以上模型和NAR模型进行训练,误差在界限之间符合预期,Plot Response误差符合预期值。模型训练良好,自相关的一个时间的输出误差和另外一个时间输出的误差基本无关,是一个十分理想预测模型。原创 2021-07-28 16:46:20 · 38809 阅读 · 13 评论 -
2021第三届全球互联网通信云大会有感
融云总部就在北京,第三届WICC终于开回来了。很荣幸代表公司参加大会,对印象深刻的点做一些总结。互联网音视频基础架构:云-边-端协同,是这次三位演讲离不开的话题,以视频为代表的富媒体信息称为主流。现在的通信云社会分工,难全球化,有比特信息服务加持能更好的运作。早期考虑成本,后期考验能力。现在音视频是通信上很关注的点,信息都是从低维上高纬转化的。以音视频为基础,赋能各个场景。音视频与各行各业带来格局变化,教育、电商、办公三个方面与音视频擦除不一样的火花,同时行业需求在不断变化。智能赢家创造了广阔的空间,一原创 2021-07-24 21:39:20 · 258 阅读 · 2 评论 -
Computex 2021 NVIDIA 主题演讲有感
英伟达的新款显卡RTX 3070 Ti和3080Ti终于来了。没有意外,70ti是锁算力了,在这波矿潮中,两张新卡仍然限制挖矿效率。虽然这两款显卡都支持Nvidia的所有光线追踪、DLSS和Reflex技术,但是对这两款新空气显卡,这些价格在上市后应该会进行调整,但不要指望它们接近建议零售价,只能选择“躺平”。现在年轻人更倾向于电子游戏作为他们最喜欢的娱乐活动,据估计《我的世界(Minecraft)》的开放世界已经发展到40亿平方公里,是地球面积的8倍,Valve刚刚宣布,将以2021 DOTA冠军联赛提原创 2021-06-02 20:38:25 · 268 阅读 · 1 评论 -
一篇文章带你看遍Google I/O 2021开发者大会
2021年谷歌I/O大会采用线上的形式,演讲的主题围绕人工智能,包括TPU V4人工智能芯片发布,更新了Android 12, Wear OS等普通用户熟悉的系统,看着手中的Pixel 5又香了。开场有机器学习演唱会……原创 2021-05-20 08:21:46 · 1229 阅读 · 2 评论 -
《2020-2021中国开发者调查报告》发布了!
最近CSDN发布了一年一次的《2020-2021中国开发者调查报告》。我在第一时间里通读了全文,人工智能时代,数学专业前程似锦!高校当然要跟上这波浪潮,要开展人工智能方面的专业体系建设,进行本科人才培养。我的本科学校已经开展数据科学与大数据技术、人工智能等专业,相信不久的将来就能培养一大批顶尖人才和大规模的人工智能从业人员。原创 2021-04-20 16:02:03 · 1276 阅读 · 0 评论 -
2020年度学习总结
疫情暂时让我从研发岗位转型到为团队做自媒体。自媒体不是能在短时间有很大成效的东西,想要做好,需要不停得学习和坚持。大学多媒体设计与制作已经不单纯从网络三剑客开始,不过平面设计,之前数码摄影后期的一些photoshop的功底还是足够应付,而学习影视后期,必须在学习理论知识之余掌握很多不同的视频编辑加工软件。最开始接触视频剪辑Edius,对计算机配置要求不高,简单易上手,实践中发现不太能满足需求。原创 2020-12-31 20:24:05 · 691 阅读 · 0 评论 -
关于人工智能的一些思考
在关于人工智能和制度的辩论中,有一种重要观点:人工智能可能是新一代经济的技术基础。例如,人工智能很重要的一个应用是在金融领域。在人工智能中,所谓智能的核心部分是算法。迄今为止机器人只能是由设计者为它设置有限范围的目标函数,所以目前的人工智能还属于弱人工智能,从人工智能的科学技术基础和人工智能发展两方面对人工智能有一些思考。一、人工智能的科学技术基础人工智能的基础之一是算法。人工智能的核心是算法...原创 2019-08-30 00:54:32 · 1214 阅读 · 0 评论 -
2018年度学习总结
一年时间,深度学习从自学的小白,到入了门,会训练模型,处理各种数据,调参优化等。在这过程中,学习了很多论文,也翻译了不少文章。从应用角度来说,如果说2016年是深度学习统治互联网之年,机器翻译、聊天机器人、数据中心、云服务,包括Google、Amazon、Facebook、微软、IBM在内的各大技术巨头都在不遗余力地推进深度学习的研发和应用。那么剖析CNN句子分类任务,训练各种模型,2018年就是...原创 2018-09-10 19:00:10 · 2139 阅读 · 2 评论 -
四天2018世界机器人大会带来的感触
十年后服务机器人一定是满足人类生活需求走进家庭。同时,家庭机器人在提供人类生活服务的同事,又可以通过互联网云计算大数据为整个人类和消费者提供社会商业服务(也包括社会的公共服务!) 例如,佳通机器人在家里知道你的习惯爱好,等你去了商场或者餐馆,也会即刻先收到有针对性的个性化服务。 2018世界机器人大会以 “共创智慧新动能,共享开放新时代 ” 为主题,由论坛、博览会、大赛、地面无人系统活动四大板...原创 2018-08-19 16:30:30 · 1003 阅读 · 0 评论 -
NVIDIA JETSON开发者交流会北京第二场感想
北京第二场开发者交流会,这次身份却有了不同。很荣幸代表中国开发者第一次和Xavier零距离接触。Xavier这块板子最大的优点是共享内存的同时,将1/4泰坦V揉了进去, 瓦数也差不多1/4的泰坦V 。在计算过程中不再需要像PC一样将数据以每秒2~6GB的速度考入显存 10秒内的综合处理时间稳赢泰坦V,价格也只是泰坦V的一半。其他的编译上的优势就不知道了。这性能肯定是报表级别的。对印象深刻的地方做一...原创 2018-08-16 21:11:32 · 529 阅读 · 0 评论 -
Python全栈数据工程师养成攻略
近年来大数据(BigData)的概念获得不行,python已经成为机器学习热门的工具。anaconda把与python有关的库(numpy,scipy等等)都打成一个包。pycaffe 的安装以及 notebook 环境配置是为了更方便的去使用深度学习框架。notebook 使用浏览器作为界面使用,可以编写和执行 python 代码。 从个人角度出发,在时间有限和资源有限的条件下,实现一...原创 2018-08-03 14:30:27 · 1426 阅读 · 0 评论 -
APP进阶实战:最快10分钟接入HUAWEI HiAI有感
华为HiAI是面向移动终端的AI计算平台,了解HUAWEI HiAI的平台功能、优势、技术以及HUAWEI HiAI能为APP带来的价值,为开发者提供人工智能计算库及API,助力开发者便捷高效地编写在移动设备上运行的人工智能应用程序。有助于对于投身人工智能领域的移动端应用开发者;对Huawei移动计算平台感兴趣的开发者;对AI和移动端应用感兴趣的开发者,所以对于移动应用方向也偏爱人工智能的开发...原创 2018-08-07 21:25:54 · 3968 阅读 · 1 评论 -
NVIDIA Jetson开发者交流会有感
作为英伟达在2018年首场交流会,干货颇多。深度学习、神经网络等做了一些演示,第一次大会难免有些讲解偏底层。刚开始进行签到,到场的都能拿到N的纪念杯。 NVIDIA分享了技术趋势,Jetson TX2,Retail介绍及初创加速计划。然后介绍Jetpack新功能,Deepstream在Jetson平台上的实现及TensorRT的新特性。然后是合作伙伴分享,其次是讨论提问环节,最后是自...原创 2018-01-23 23:25:53 · 2255 阅读 · 0 评论 -
NVIDIA AT SIGGRAPH 2018的体会
老黄诚不欺我,果然有重量级产品发布。年度SIGGRAPH大会是计算机图形学领域的盛会,今年大会将在加拿大温哥华举办,虽不能直接参会,但是现场直播也能身临其境的了解一下行情。对留下深刻印象的地方做一个总结。 SIGGRAPH 2018是世界领先的年度跨学科的学术大会,向世界展示最新的计算机图形和互动技术成果,还包括具有广度和深度的经典栏目“计算机动画节”中的“电子剧场”和新设立的“VR影院”。 ...原创 2018-08-14 09:39:22 · 859 阅读 · 0 评论 -
深度学习框架Caffe在Ubuntu下编译安装
国内相关教程都互相借鉴大同小异,于是连出错的方式也雷同,所以借鉴了国外多个技术论坛,写一篇配置教程。 环境: 操作系统: Ubuntu 16.04 GCC/G++:5.4.0 CUDA:9.0.252 OpenCV: 2.4.11和3.3.1 Matlab :R2014b(a) Python: 2.71.在安装的路径下 clone :git...原创 2018-04-07 17:01:12 · 441 阅读 · 0 评论 -
数据可视化环境(Python接口)配置
anaconda把与python有关的库(numpy,scipy等等)都打成一个包,建议用anaconda来进行安装。下载对应系统和对应版本的anaconda来安装,减少安装过程的问题。 pycaffe 的安装以及 notebook 环境配置是为了更方便的去使用 深度学习框架caffe。notebook 使用浏览器作为界面使用,可以编写和执行 python 代码。一、查看Pyth...原创 2018-04-17 11:01:40 · 883 阅读 · 0 评论 -
图形化操作工具DIGITS 6.1的安装与运行
不够熟悉Python和命令行,还想学深度学习,幸好Nvidia Digits是一款web应用工具,可以在网页上对Caffe进行图形化操作和可视化。Nvidia对深度学习真是偏爱,为了卖出更多的显卡真是无所不用其极,真是希望全民会玩深度学习。一、环境操作系统: Ubuntu 16.04 GCC/G++: 5.4.0 CUDA: 9.0.252 OpenCV: 2.4.11和3.3...原创 2018-04-22 15:16:26 · 4284 阅读 · 6 评论 -
Ubuntu下编译caffe解决方案总结
下一届学生要在我的项目的基础上开展大学生科研项目,所以记录下来给自己以后借鉴使用,也可以帮助他们少走一些弯路。 caffe这个深度学习框架学要得对环境的要求和依赖的使用非常多,很容易出现问题,网上关于caffe的安装教程非常多,但是关于每一步是否操作成功,出现了什么样的错误又该如何处理没有给出说明。 操作系统的环境千差万别,按照博客中的教程一步步的安装,最后可能失败。建议一定要先查...原创 2018-04-13 09:00:38 · 1668 阅读 · 0 评论 -
tensorflow学习笔记
深度学习技术一直在发展,但是深度学习框架caffe的更新跟不上进度,很多新的技术在caffe里用不了。TensorFlow在Google的支持下如日中天,于是在学了caffe后还要学一下tensorflow,两者相辅相成,结合使用。一、 安装anaconda1.在continuum官网 下载anaconda 现在的版本有python3.6版本和python2.7版本 去anacond...原创 2018-05-01 07:05:07 · 387 阅读 · 0 评论 -
ubuntu 16.04搭建OpenCV3.1环境
实在是低估了深度学习对于硬件的要求,还好导师非常好,给我找了一台服务器。整个配置过程不难,要注意cuda和openCV版本兼容问题,需要十分细心 操作系统: Ubuntu 16.04 GCC/G++:5.3.0 CUDA:8.0.252 OpenCV: 2.4.11和3.1.0 Matlab :R2014b(a) Python: 2.71、 安装官方给的open...原创 2018-04-04 08:30:08 · 512 阅读 · 0 评论 -
TensorRT 3.0在Jetson TX2部署实战
目前关于使用TensorRT 3.0加速推理caffe的教程不太多,本博客会介绍部署TensorRT从HOST端到Jetson TX2端整个WORKFLOW,然后说明如何修改samples代码以便可以用自定义模型进行推理加速,主要从以下四个方面展开TensorRT简介环境配置HOST端UFF文件生成Jetson端模型文件解析与推理1.TensorRT简介NVIDIA Te...原创 2018-05-11 15:42:59 · 5540 阅读 · 3 评论 -
DeepLearning 0.1 documentation深度学习教程中文翻译
Deep Learning Tutorials 原文网址:https://deeplearning.net/tutorial/index.html 深度学习教程 深度学习是机器学习研究的一个新的领域,引入的目的是为了让机器学习更接近于最初的目标之一:人工智能。看这些课程笔记以对深度学习有一个初步的认识: brief introduction to Machine Learning for ...翻译 2018-05-07 21:28:34 · 461 阅读 · 0 评论 -
Jetson TX2开发板运行jetson-inference出现问题的解决办法
根据github上Nvidia深度学习教程在使用git clone jetson-inference命令到Jetson TX2后,,执行cmake ../后是出现nvidia.app.box.com连接,然后一直重复连接,提供两种解决方案。分析问题: 1.在执行cmake ../ 命令时,需要执行jetson-inference下的CMkeList.txt,编译CMkeList.txt时要...原创 2018-05-08 18:12:11 · 2699 阅读 · 9 评论 -
总结GTC TAIWAN 2018主题演讲
本次演讲老黄虽然没有放出新核弹的消息,但是亮点依旧很多,令我印象深刻的地方做一个简短总结。 NVidia医学影响平台Clara,和之前在哈工大的开发者交流会医学使用B超X光技术的应用很相似,人工智能可以更好地应用于医疗这是不错的发展。 Google将原生TensorRT4整合到TensorFlow。 超人规模推论非常困难,“PLASTER”Programmability...原创 2018-05-30 14:43:46 · 1242 阅读 · 0 评论 -
参与深度学习超级计算机DGX系列产品研讨会的感受
本科阶段的毕业设计是在Jetson TX2上跑的,公司做深度学习涉及DGX,有幸参与此次英伟达组织的DGX workshop学习下。官方的说法是DGX Workshop dedilcated to Robotics for Jetson Xavier and Isaac。不过现场既没有半价开发板也没有尺子,更没有Xavier实物,纯粹的DGX和Jetson TX2的深度交流,不过干货也不少。 两...原创 2018-07-17 20:05:34 · 870 阅读 · 0 评论 -
NVIDIA自主机器人与深度强化学习解读
李博士对自助机器人和深度强化学习有了更新的解读,对印象深刻的做个总结。 不同产业、不同工业,机器人外形差别很大。主要部件:控制单元——控制中心(大脑),能动单元——行走的部分。 传统机械手臂没办法理解到其他手臂的空间范围,目前的工业机器人可以在机械手臂上加入传感器,实现人机协作。 今天的机器人,需要更多的智能:目标检测+目标识别定制化开发标定和前期校准当环境变化不...原创 2018-07-25 20:58:23 · 1195 阅读 · 0 评论 -
ubuntu16.04 cuda8.0安装配置
确保cuda能安装成功,查阅NVIDIA CUDA Installation Guide for Linux确认安装前的环境是否符合要求环境: 操作系统: Ubuntu 16.04 GCC/G++:5.3.0 OpenCV: 2.4.11和3.1.0 Matlab :R2014b(a) Python: 2.7一、更换ubuntut16.04的源1.使用过几个源,相...原创 2018-04-03 07:14:38 · 7129 阅读 · 2 评论