什么是泛化能力?
通常我们用泛化能力来评判一个模型的好坏,通俗的说,泛化能力是指一个机器学期算法对新样本(即模型没有见过的样本)的举一反三的能力,也就是学以致用的能力。
举个例子,高三的学生在高考前大量的刷各种习题,像五年高考三年模拟、三年高考五年模拟之类的,目的就是为了在高考时拿到一个好的分数,高考的题目就是新题,一般谁也没做过,平时的刷题就是为了掌握试题的规律,能够举一反三、学以致用,这样面对新的题目也能从容应对。这种规律的掌握便是泛化能力,有的同学很聪明,考上名校,很大程度上是该同学的泛化能力好。
在机器学习中,对于分类和回归两类监督学习,分别有各自的评判标准,这里我们讨论常用于分类任务的性能度量标准——AUC 和 ROC。
几个重要概念:混淆矩阵、准确率、精准率和召回率
1. 混淆矩阵
假设我们建立的是二分类模型,将实际类别和预测类别进行两两组合,就形成了混淆矩阵。
真实情况 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP(真正例) | FN(假反例) |
反例 | FP(假正例) | TN(真反例) |
接下来的性能度量指标都是由混淆矩阵的各个元素计算得来。
2. 准确率
准确率 = T P + T N T P + T N + F P + F N 准确率=\frac{TP+TN}{TP+TN+FP+FN} 准确率=TP+TN+FP+FNTP+