层次分析法——评价类问题
目录
2.构造判断矩阵,(某一层次个元素关于上一层某标准的重要性,通过两两比较构造判断矩阵)
3. 计算被比较元素对于该准则相对权重,并进行一致性检验(逻辑上应先进行一致性检验)
-
一.层次分析法的步骤及原理
-
分析各因素层次关系,建立系统层次结构
层次关系用层次结构图表示,如:
层次结构图分为目标层,准则层,方案层。准则层可以有多层,每个准则层可以对应一个或多个方案层。准则的确立可以通过网络搜索获取。
2.构造判断矩阵,(某一层次个元素关于上一层某标准的重要性,通过两两比较构造判断矩阵)
指标一 | 指标二 | 指标三 | 。。。 | 。。。 | |
指标一 | |||||
指标二 | |||||
指标三 | |||||
。。。 | |||||
。。。 |
图一:各个指标间的判断矩阵
图二:元素间重要性的量化
指标填写时注意最终结果对称的两格之间存在倒数关系,数值要结合实际进行填写。最终构造判断矩阵。最终可以根据这个矩阵得到各个指标的权重。
注意:判断矩阵表示的是与指标j相比i的重要程度
指标一 | 方案一 | 方案二 | 。。。 |
方案一 | |||
方案二 | |||
。。。 |
图三:各个方案间的判断矩阵
3. 计算被比较元素对于该准则相对权重,并进行一致性检验(逻辑上应先进行一致性检验)
权重的计算有三种方法:算术平均法,几何平均法,特征值法。
算术平均法:将权重求算术平均数并进行归一化(将权重按比例变化使之和为一),归一化计算时数据按列取。
几何平均法:取每行的几何平均数作为权重进行归一化。
特征值法:用判断矩阵的最大特征值对应的特征向量当作权重进行归一化。
为保证稳健性三种方法都用,最后用特征值法的结果带入计算
因为各方案,指标的判断矩阵填写时可能出现逻辑上的矛盾(重要性出现矛盾),(一致矩阵:各行各列成倍数,只有判断矩阵为非一致性矩阵才需要进行一致性检验)所以要进行一致性检验:
- 计算一致性指标CI
- 查平均随机一致性指标RI
图四:平均随机一致性指标RI
3. 计算一致性比例CR
CR<0.1时一致性可以接受
CR>0.1时调整一致矩阵使其达标
4. 用excel计算合成权重并进行排序
权重 | 方案一 | 方案二 | 。。。 | |
指标一 | ||||
指标二 | ||||
。。。 |
图三:各个指标,方案的权重构造的表格
-
二. 层次分析法的代码分析
%清风数学建模matlab 代码
%输入矩阵
A=input('A=');
[n,n] = size(A);%判断是否为方阵
% % % % % % % % % % % % %方法1: 算术平均法求权重% % % % % % % % % % % % %
aSum = sum(A);
aSumMatrix = repmat(asum,n,1);%将每列求和得到的值构建和原矩阵相同的矩阵
Aweight = A ./ aSumMatrix;
disp('算术平均法求权重的结果为:');
disp(sum(Aweight,2)./n) %按行求平均数
% % % % % % % % % % % % %方法2: 几何平均法求权重% % % % % % % % % % % % %
LineProduct = prod(A,2); %按行取元素求乘积
root = LineProduct .^ (1/n); %求n次开根号
disp('几何平均法求权重的结果为:');
disp(root ./ sum(root)) %归一化后输出
% % % % % % % % % % % % %方法3: 特征值法求权重% % % % % % % % % % % % %
[V,D] = eig(A); %v为特征向量,D为特征值构成的对角阵
maxeig = max(max(D)); %求最大特征值
[r,c]=find(D == maxeig , 1); %求最大特征值的位置
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) ) %将最大特征值对应特征向量作为权重进行归一化处理
% % % % % % % % % % % % %计算一致性比例CR% % % % % % % % % % % % %
CI = (maxeig - n) / (n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end