概念
层次分析法(The analytic hierarchy process)简称AHP。应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
做法:对多个目标进行综合评价,确定第一名的目标。
例如从5名作者中选出综合排名第一的作者。
模型框架
目标层-----------------第一名的作者
准则层-----------------评价指标,如粉丝数、作品数、获赞数等
方案层-----------------多个作者
基本思想
- 数量级归一化
在不改变数据本身意义情况下,使不同指标具有相同数量级。
如果将1000万粉丝数与20个作品数简单相加,该方案毫无意义,因此需要将准则层的指标归一化为同一个数量级,例如0~1之间,该值的大小必须在与其他作者的横向对比中保持不变。 - 重要性的区别
多个评价指标的重要性显然不同,一个作者可能发布很多作品但获赞寥寥无几,而另一个只发布了一个作品但反响剧烈,显然后者更加有资格胜出。
适用赛题
- 评选、排名
- 决策分析
特点
1.目标层明确,选第一、第二……
2.准则层在题目中已给出,或者在可查阅文献
3.方案层必须明确,题目中已经给出了所有方案
缺点:评价结果具有主观性,准则层的权重往往自己确定
模型建立与求解
- 归一化处理
对于每个指标下的数据[a b c d],归一化处理可得到 [a/(a+b+c+d) b/(a+b+c+d) c/(a+b+c+d) d/(a+b+c+d)] - 确定准则层权重
一般来说,获赞数比作品数更重要,应该具有更高的权重。
权重是由人主观设定的,这也是层次分析法的缺点。
如何科学的设定权重?
对指标的重要性进行两两比较,构造判断矩阵,求出权重
判断矩阵:元素aij表明第i个指标相对于第j个的重要程度,对角线均为1,对称元素互为倒数。
依次对变量进行两两比较,主观设定所有元素,求出判断矩阵。
不一致现象
原因:两两比较中暂时忽略了其他因素,导致最后的结果出现矛盾
例如:重要性,稿件数<播放数<获赞数,在后面的分析中出现了稿件数>获赞数,前后矛盾。
一致矩阵
满足aij = aik*akj,且矩阵各行各列呈倍数关系。
一致性校验
因为权重的结果具有主观性,难以得到一致性矩阵,因此求得差异性不大的判断矩阵即可。
概念:求出并检验差异的过程叫一致性校验。
一致性比例CR
RI为平均一致性指标,查表准则数n对应的RI(不要纠结轮子怎么来的)
如果一致性比例CR =0,说明判断矩阵是一致矩阵,不会出现任何矛盾的情况
如果一致性比例CR < 0.1,可以认为判断矩阵一致矩阵的“差异”不大,通过一致性检验
如果一致性比例CR ≥ 0.1,需要修改判断矩阵,直到CR <0.1
算数平均法求权重
- 对判断矩阵列归一化
- 对归一化后的判断矩阵,每行求算数平均值
问题求解
有了权重向量,乘以对应的值就可以判断最后得分情况,确定排名。