【数学建模】层次分析法 1

层次分析法(AHP)是一种用于多目标决策分析的方法,通过归一化处理数据,确定各评价指标的权重。它适用于如作者排名等评选场景。权重通常由人为设定,可能存在主观性。通过构建判断矩阵和一致性校验来确保决策的一致性。当一致性比例CR小于0.1时,认为矩阵通过一致性检验。最终,结合权重和指标值,可确定最终得分和排名。
摘要由CSDN通过智能技术生成

概念

层次分析法(The analytic hierarchy process)简称AHP。应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法
做法:对多个目标进行综合评价,确定第一名的目标。
例如从5名作者中选出综合排名第一的作者。

模型框架

目标层-----------------第一名的作者
准则层-----------------评价指标,如粉丝数、作品数、获赞数等
方案层-----------------多个作者

基本思想

  1. 数量级归一化
    在不改变数据本身意义情况下,使不同指标具有相同数量级。
    如果将1000万粉丝数与20个作品数简单相加,该方案毫无意义,因此需要将准则层的指标归一化为同一个数量级,例如0~1之间,该值的大小必须在与其他作者的横向对比中保持不变。
  2. 重要性的区别
    多个评价指标的重要性显然不同,一个作者可能发布很多作品但获赞寥寥无几,而另一个只发布了一个作品但反响剧烈,显然后者更加有资格胜出。

适用赛题

  1. 评选、排名
  2. 决策分析

特点

1.目标层明确,选第一、第二……
2.准则层在题目中已给出,或者在可查阅文献
3.方案层必须明确,题目中已经给出了所有方案
缺点:评价结果具有主观性,准则层的权重往往自己确定

模型建立与求解

  1. 归一化处理
    对于每个指标下的数据[a b c d],归一化处理可得到 [a/(a+b+c+d) b/(a+b+c+d) c/(a+b+c+d) d/(a+b+c+d)]
  2. 确定准则层权重
    一般来说,获赞数比作品数更重要,应该具有更高的权重。
    权重是由人主观设定的,这也是层次分析法的缺点。

如何科学的设定权重?

对指标的重要性进行两两比较,构造判断矩阵,求出权重
判断矩阵:元素aij表明第i个指标相对于第j个的重要程度,对角线均为1,对称元素互为倒数。
在这里插入图片描述
依次对变量进行两两比较,主观设定所有元素,求出判断矩阵。

不一致现象

原因:两两比较中暂时忽略了其他因素,导致最后的结果出现矛盾
例如:重要性,稿件数<播放数<获赞数,在后面的分析中出现了稿件数>获赞数,前后矛盾。
一致矩阵
满足aij = aik*akj,且矩阵各行各列呈倍数关系。

一致性校验

因为权重的结果具有主观性,难以得到一致性矩阵,因此求得差异性不大的判断矩阵即可。
概念:求出并检验差异的过程叫一致性校验。

一致性比例CR

在这里插入图片描述
RI为平均一致性指标,查表准则数n对应的RI(不要纠结轮子怎么来的)
在这里插入图片描述

如果一致性比例CR =0,说明判断矩阵是一致矩阵,不会出现任何矛盾的情况
如果一致性比例CR < 0.1,可以认为判断矩阵一致矩阵的“差异”不大,通过一致性检验
如果一致性比例CR ≥ 0.1,需要修改判断矩阵,直到CR <0.1

算数平均法求权重

  1. 对判断矩阵列归一化
  2. 对归一化后的判断矩阵,每行求算数平均值
    在这里插入图片描述

问题求解

有了权重向量,乘以对应的值就可以判断最后得分情况,确定排名。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值