1. 股票时间序列预测
传统的股票时间序列预测主要依赖统计和计量经济学方法,如自回归滑动平均模型(ARMA-GARCH)、向量自回归模型(VAR)、状态空间模型、扩散模型和误差修正向量模型(VECM)。这些模型通过识别金融系列中的模式和波动性,对市场进行分析和预测。随着机器学习的发展,决策树、支持向量机(SVM)等方法逐渐受到重视。近年来,深度学习技术如循环神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的应用显著提升了股票时间序列预测的精度和效率。GPT-3、GPT-4和LLaMA等大型语言模型在解析复杂数据关系方面表现出色,推动了时间序列数据转化为文本序列的创新。
2. 数学推理
数学推理在金融领域构建复杂的金融理论、模型和实践的基础。微积分、统计学、概率论和线性代数等数学学科用于设计和解释金融模型,评估投资策略和优化投资组合。LLMs能够处理大量的数学文本和公式,提供关于金融问题的深刻洞见和创新解法。例如,在衍生品定价和风险管理方面,LLMs可以结合微积分和统计学原理,提供更精准的计算和分析。
3. 量化交易
量化交易传统上依赖于数学和统计模型,处理历史数据和预设算法策略。LLMs通过其先进的自然语言处理能力,在处理非结构化数据(如新闻文章、社交媒体和财务报告)方面表现出色。这些模型能够提取情感信息,识别潜在市场情绪,增强交易策略的鲁棒性和适应性。例如,LLMs可以分析分析师报告中的隐含信息,提供更全面的市场动态理解,提升交易策略的效果。
4. 资产组合优化
现代投资组合理论主要基于历史市场数据和统计分析,旨在平衡风险与回报。LLMs在处理和分析大量非结构化数据(如市场报告、新闻文章和财务报表)方面具有优势,能够揭示隐藏的市场情绪和新兴趋势,提供更全面的风险评估。结合定性洞察和定量数据,投资者可以实现对资产组合优化的全面方法,提升投资决策的精确性和灵活性。
5. 机器人顾问
机器人顾问利用LLMs和AI技术,提供个性化的投资组合调整和市场动态分析。LLMs解析大量数据集,发现复杂的金融市场模式,提供明智的投资指导。这些平台能够灵活更新投资策略,反映市场变化,提高用户信任度和投资满意度。尽管目前个性化建议有限,LLMs的应用将推动机器人顾问向更广泛适用的投资原则发展。
6. 并购与收购预测
在并购与收购预测中,LLMs通过分析财务报告、新闻文章和新闻发布,揭示潜在的趋势和战略转变。情感分析检查市场评论和财务报告,识别公司或行业市场情绪的变化,预测并购的可能性。LLMs还能监控社交媒体,作为潜在并购动向的早期指标。例如,分析科技公司合作项目的增加,可以预测潜在的收购行为。
7. 破产预测
LLMs在破产预测中,通过评估财务报告、新闻文章和企业领导人的声明,发现财务困境的早期迹象。整合文本分析和数值建模,提高破产预测的准确性。情感分析揭示企业沟通和财务讨论中的早期预警信号。例如,分析零售公司的财务报表和行业新闻,识别破产风险的迹象。
8. 市场趋势预测
LLMs在市场趋势分析中,通过处理金融新闻、财务报告和社交媒体等各种来源的文本数据,提供关于市场情绪和趋势的洞察。结合数值数据和NLP技术,揭示市场动态和投资者情绪的微妙变化。例如,使用GPT-4分析实时金融新闻和历史价格数据,构建多维度的市场状况视图,提升市场预测的准确性和可解释性。
9. 信用评分
信用评分在金融稳定中起着关键作用。LLMs通过多任务学习和少量样本泛化,重塑金融评估领域。处理和分析大量文本数据,如贷款申请和交易记录,提供额外的信息和洞见。例如,分析信用评级和分析师报告,识别信贷评级下调或负面展望的趋势,提高风险评估的准确性。
10. ESG评分
ESG评分评估公司在环境、社会和治理方面的表现。LLMs提升数据处理和分析能力,快速处理大量非结构化数据,提供全面的ESG评估。例如,分析企业可持续性报告和社交媒体帖子,提取关键洞察,提供更客观和一致的ESG评分。
11. 欺诈检测
LLMs在欺诈检测中,通过分析交易、电子邮件、个人资料等多领域数据,识别高风险交易。初步过滤器学习客户交易历史和详细交易信息,减少人工调查负担。例如,分析交易数据和个人资料,筛选出可疑交易,提高金融系统的安全性。
12. 合规检查
零样本LLM在金融合规领域尤为重要,能够快速适应新标准,识别文档中的不一致和异常。例如,在审计和交易监控中,LLMs直接部署,解析文档,识别合规问题,节省时间和资源。
13. 金融学习和教育
GPT-4在金融教育中,通过解释复杂金融概念、提供个性化学习体验和加强用户互动,提升学习效果。例如,解释证券市场、投资组合多样化、风险管理等复杂术语,提供个性化教学内容,提高学习效率和用户满意度。
14. 命名实体识别
命名实体识别(NER)是自然语言处理领域的一项关键技术,用于从文本中识别并分类具有特定含义的实体,如人名、地点、组织、时间表达、金融术语等。
NER在信息提取、问答系统、内容分析、知识图谱构建等领域发挥着重要作用。解决NER问题主要有三种主流方法,即基于规则的方法、基于机器学习的方法和基于深度学习的方法。
基于规则的系统运作基于使用预定义的规则和模式来识别实体,例如使用地名词典来识别地点。它易于解释,不需要训练数据。虽然依赖于专家知识,但这些方法的灵活性和可扩展性有限。
基于机器学习方法:这些方法,如支持向量机(SVM)和随机森林,通过基于手动选择的特征的训练数据集来学习识别实体。它们比基于规则的方法提供更多的灵活性,但需要大量的注释数据。深度学习技术用于标记序列,利用分布式的单词和字符表示,通过端到端地训练句子或序列特征。这些方法主要使用BiLSTM结构或基于自注意力的网络。它们经常使用条件随机场(CRF)层来解码标签,帮助理解标签之间的相互依赖性。利用这些能力,深度学习方法在处理复杂模式和大量数据集方面非常有效。NER在金融领域有广泛的应用,它可以用于信息提取(从金融新闻和报告中提取有关公司、股票和市场事件的关键细节)、合规监控(自动识别和监督金融文件中的敏感实体,如洗钱和欺诈)以及投资决策支持(通过分析市场新闻和报告中的实体和事件,为投资决策提供数据支持)。这些应用强调了NER在提高效率、确保合规性和支持战略决策中的重要作用。
15. 情感分析
在现代金融市场预测,特别是在比特币交易方面,情感分析的重要性已经通过多项学术研究得到证实 。这个研究领域主要分为两种方法论类别:基于词典的方法和机器学习方法,两者对于识别市场趋势至关重要。
基于词典的方法:这类方法进一步细分为词典和语料库策略。例如,Dev Shah等人开发的模型使用Python库“pattern”将文本数据转换为数值向量,通过量化正面和负面词汇的出现次数来计算情感得分。然而,这种模型由于对单个单词的情感评分未加权,可能导致反映实际市场情绪的准确性受限。
机器学习技术:这些技术分为无监督和有监督学习。M.S. Usha等人的无监督模型 ,利用Gibbs采样算法,同时识别情感和主题,但在捕捉中性情绪方面效率不高。相比之下,D.K. Kirange等人的有监督方法 集中于新闻内容中情绪分类,以确定情感极性,使用如朴素贝叶斯、支持向量机和KNN等算法,其中KNN表现出最佳准确率。
此外,Sneh Kalra等人 提出了一种结合朴素贝叶斯情感分析与Yahoo Finance每日股票波动数据的模型,尽管它对单一数据源有所依赖。Xiadong Li等人 则提出了一种基于深度学习的股票预测系统,将情感分析与技术股票指标融合。还有其他多样化的研究方法,如为情感分析设计专门的NLP子模块 ,N-gram和朴素贝叶斯算法的应用 ,基于词典的情感分析 ,以及情绪分类配合每日情感评分 。时间序列分析模型也被应用于此领域 。
这些不同的方法强调了情感分析在金融预测中的复杂性和多维度,特别是在新闻分析背景下。每种方法都提供了解读和预见市场趋势的独特视角,展示了市场情绪与金融新闻分析之间复杂的相互作用。
通过以上应用,LLMs展示了其在金融投资领域的广泛潜力,从预测和优化到教育和服务,推动金融科技的发展和创新。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。