Agentic Patterns项目:包含Andrew Ng在其 DeepLearning.AI博客文章系列中定义的4种Agentic模式的从头实现,主打去框架化:没有 LangChain,没有 LangGraph,没有 LlamaIndex,没有 CrewAI。对LLM API 调用纯粹而简单。
反思模式:Reflection Pattern
这是一个非常基本的模式,但尽管它很简单,它却为LLM响应带来了令人惊讶的性能提升。
它允许大模型反思其结果,建议修改、添加、改进写作风格等。
BASE_GENERATION_SYSTEM_PROMPT = """``Your task is to Generate the best content possible for the user's request.``If the user provides critique, respond with a revised version of your previous attempt.``You must always output the revised content.``"""`` ``BASE_REFLECTION_SYSTEM_PROMPT = """``You are tasked with generating critique and recommendations to the user's generated content.``If the user content has something wrong or something to be improved, output a list of recommendations``and critiques. If the user content is ok and there's nothing to change, output this: <OK>``"""
工具模式(Tool Pattern)
LLM 权重中存储的信息(通常)不足以对我们的问题提供准确而有见地的答案
这就是为什么我们需要为大模型提供接触外部世界的途径
实际上,可以构建任何你想要的工具(归根结底,它们只是 LLM 可以使用的功能),一个工具可以让你访问维基百科,另一个工具可以分析 YouTube 视频的内容或计算 Wolfram Alpha 中的困难积分。
TOOL_SYSTEM_PROMPT = """``You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.``You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug``into functions. Pay special attention to the properties 'types'. You should use those types as in a Python dict.``For each function call return a json object with function name and arguments within <tool_call></tool_call>``XML tags as follows:`` ``<tool_call>``{"name": <function-name>,"arguments": <args-dict>, "id": <monotonically-increasing-id>}``</tool_call>`` ``Here are the available tools:`` ``<tools>``%s``</tools>``"""
规划模式(Planning Pattern)
经过上述两步,已经看到了能够反思和使用工具来访问外部世界的智能体。但是…规划呢,即决定按照什么步骤顺序来完成一项大任务?
这正是规划模式所提供的:让 LLM 将任务分解为更小、更容易实现的子目标,而不会忘记最终目标。
规划模式最典型的例子是ReAct技术:
REACT_SYSTEM_PROMPT = """``You are a function calling AI model. You operate by running a loop with the following steps: Thought, Action, Observation.``You are provided with function signatures within <tools></tools> XML tags.``You may call one or more functions to assist with the user query. Don' make assumptions about what values to plug``into functions. Pay special attention to the properties 'types'. You should use those types as in a Python dict.`` ``For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:`` ``<tool_call>``{"name": <function-name>,"arguments": <args-dict>, "id": <monotonically-increasing-id>}``</tool_call>`` ``Here are the available tools / actions:`` ``<tools>``%s``</tools>`` ``Example session:`` ``<question>What's the current temperature in Madrid?</question>``<thought>I need to get the current weather in Madrid</thought>``<tool_call>{"name": "get_current_weather","arguments": {"location": "Madrid", "unit": "celsius"}, "id": 0}</tool_call>`` ``You will be called again with this:`` ``<observation>{0: {"temperature": 25, "unit": "celsius"}}</observation>`` ``You then output:`` ``<response>The current temperature in Madrid is 25 degrees Celsius</response>`` ``Additional constraints:`` ``- If the user asks you something unrelated to any of the tools above, answer freely enclosing your answer with <response></response> tags.``"""``
多智能体模式(Multiagent Pattern)
相信不少小伙伴都听过crewAI 或 AutoGen 等框架,它们允许您创建多智能体应用程序。
这些框架实现了多智能体模式的不同变体,其中任务被划分为由不同角色执行的较小子任务(例如,一个Agent可以是软件工程师,另一个Agent可以是项目经理等)。
这一模式的实际效果开发ing…
文末讨论:真正的AGI?
真正的AGI的秘密不在于一个万能的模型…而在于一系列针对特定问题空间的明确定义的本体,其中包含许多 AI 模型 + 代码,以在直觉+逻辑护栏之间取得适当的平衡,从而实现Agent推理、规划和决策???
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。