Llama系列大语言模型一直是开源领域的大模型标杆,Llama3系列大模型自从开源之后一直在不断更新。最早的Llama3模型于2024年4月开源,此后,几乎每个三个月都有一个新版本发布。就在昨天,Meta开源了最新的Llama3.3-70B模型,这是Llama3.3系列目前唯一开源的模型。尽管该模型的参数规模仅仅700亿,但是在多项评测基准上已经超过了4050亿参数规模的Llama3.1-405B,后者是Llama系列模型中参数规模最大的一个,也是业界开源模型中参数规模最高的模型之一。
-
Llama3.3-70B-Instruct简介
-
Llama3.3-70B-Instruct的评测结果
-
Llama3.3和其它Llama3系列模型的关系
-
Llama3.3-70B-Instruct的训练成本和开源情况
Llama3.3-70B-Instruct简介
Llama3.3-70B-Instruct是目前Llama3.3系列中唯一开源的模型,且没有基座大模型,仅开源了指令优化版本的模型。
根据官方的介绍,Llama3.3-70B-Instruct是经过预训练以及指令微调的模型,参数规模700亿,是一个纯文本的大语言模型,这意味着它不支持多模态的输入和输出,仅支持文本的输入和输出。不过Llama3.3-70B-Instruct是多语言大模型,支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语共8种语言,不支持中文(这里非常奇怪的是,汉语作为广泛使用的语言,一直不在Llama系列的支持范围,哪怕欧洲的Mistral都开始支持汉语了,这个模型也不支持,小扎这位同志觉悟有点问题啊~)。
Llama3.3-70B-Instruct在15万亿tokens上训练,支持128K上下文输入。知识日期是截止2023年12月份。
该模型效果的提升主要依赖于对齐训练技术和强化学习的进步。Meta官方简单提了是基于合成数据,做了在线偏好优化,可以在训练过程中,基于反馈结果实时优化模型。
此外,Llama3.3-70B-Instruct支持GQA,即Grouped-Query Attention,GQA 减少了注意力机制的计算复杂度,这对于像 Llama 3.3 这样的 700亿参数大模型尤为重要。在推理阶段,它使得模型能够以更高的速度生成文本。
Llama3.3-70B-Instruct的评测结果
Llama3.3-70B-Instruct在多项行业基准测试中超越了许多开源和闭源的聊天模型,展现了卓越的性能。
特别是Llama3.3-70B-Instruct的参数规模700亿左右,但是各项评测指标约等于4050亿参数规模的Llama3.1-405B模型!这意味着Llama3.3-70B-Instruct可以用更少的资源,更快地生成文本,但是性能与近6倍参数规模的大模型差不多!
下图展示了Llama3.3-70B-Instruct模型和业界其它模型的对比结果:
可以看到,该模型在多个测试中均取得了最优的结果,甚至不低于GPT-4o的水平。
在DataLearnerAI收集的全球大模型排行榜中,按照MMLU排序,Llama3.3-70B-Instruct模型排名第九,超越了Amazon Nova Pro,略低于Qwen2.5-72B模型,但是在数学逻辑上它的得分77分,远超同类型模型,比Qwen2.5-72B模型也高很多。
数据来源:https://www.datalearner.com/ai-models/leaderboard/datalearner-llm-leaderboard
Llama3.3和其它Llama3系列模型的关系
这里简单介绍一下Llama3系列的模型发布版本和节奏。大家就能理解Llama3.3-70B-Instruct在Llama系列的地位和目标。
目前,Llama3系列包含了4个不同的版本,分别是2024年4月份发布的Llama3系列、2024年7月份发布的Llama3.1系列、2024年9月份发布的Llama3.2系列以及2024年12月初发布的这个3.3系列。
但是,其实Llama3和Llama3.1算是比较正常的大版本节奏,因为这两个系列都包含了最小80亿参数,最大700亿以及4050亿参数规模的多个不同版本模型。
而Llama3.2系列其实只发布了1B和3B的小规模纯文本语言模型以及11B和90B的多模态版本,基本上算是Llama3.1的补充。
本次发布的Llama3.3-70B-Instruct官方也介绍说是后训练技术的迭代,这意味着其基座模型可能还是Llama3.1-70B,只是用不同的后训练或者指令微调技术迭代获得的。
Llama3.3-70B-Instruct的训练成本和开源情况
Meta公布的信息显示,Llama3.3-70B-Instruct模型训练花费了700万个GPU小时。主要是在H100-80G上训练,按照AWS的价格,这个成本大约430万美元了!
实话说,这不是一般人搞得起来的。不过好消息是Llama3.3-70B-Instruct开源,且支持免费商用。具体情况参考DataLearnerAI的模型信息卡地址:https://www.datalearner.com/ai-models/pretrained-models/llama3_3_70B_instruct
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。