Meta发布Llama 3.3 AI大模型

在这里插入图片描述

🦉 AI新闻

🚀 Meta发布Llama 3.3 AI大模型

摘要:Meta于12月6日发布了其最新的AI大模型Llama 3.3,该模型拥有700亿参数,但在性能上可媲美4050亿参数的Llama 3.1,具有更高的效率和更低的成本。Llama 3.3优化了多语言支持,支持8种语言,采用自回归模型架构,结合监督式微调和基于人类反馈的强化学习。模型具备128K的上下文长度和多个工具集成支持,并加强了安全防护措施,降低滥用风险。

🚀 OpenAI推出强化微调技术,提升模型性能

摘要:OpenAI在其“shipmas”新品发布活动中推出了强化微调(Reinforcement Fine-Tuning)技术,旨在帮助开发者打造针对特定复杂领域的专家模型。该技术利用高质量任务集和参考答案评分,使模型在领域特定任务中的推理能力和准确性显著提升。RFT特别适用于法律、金融、医疗等需要专业知识的领域。OpenAI预计该功能将在2025年初公开发布,CEO山姆・阿尔特曼称其为2024年的重大惊喜之一。

🚀 马斯克AI聊天机器人Grok向免费用户开放

摘要:马斯克的AI聊天机器人Grok于12月7日正式向X平台的免费用户开放,每两小时可发送最多10条消息。此前

### 不同模型在本地运行的差异和特点 #### Llama 3.3 特点 Llama 3.3 属于 Meta AI 开发的一系列大语言模型之一。该版本相较于之前的迭代,在参数量上有所增加,从而提升了处理复杂自然语言任务的能力[^1]。通过 Ollama 工具可以方便地将其部署到本地环境中。 ```bash ollama run llama3.3 ``` #### DeepSeek-R1 特点 DeepSeek-R1 是由三星开发的一个高性能预训练语言模型。其设计注重效率优化,使得即使是在资源有限的情况下也能高效执行推理操作[^4]。这使其成为边缘计算场景下的理想选择。 ```bash ollama run deepseek-4 特点 作为最新一代的小型化语言理解框架,Phi-4 结合了先进的架构创新和技术进步来实现更高的精度与更快的速度响应时间[^3]。尽管体积小巧却能提供接近甚至超越某些大型封闭源码系统的效能表现。 ```bash ollama run phi-4 ``` #### Mistral 特点 Mistral 则专注于特定应用场景中的卓越性能,比如对话理解和生成等领域内展现出色的成绩。它可能采用了专门定制化的算法结构以适应特殊需求的任务类型。 ```bash ollama run mistral ``` #### Gemma 2 特点 Gemma 2 主要针对多模态交互进行了强化,能够更好地解析图像、音频等多种形式的信息输入并作出合理的反馈回应。这对于构建更加智能化的人机交流平台至关重要。 ```bash ollama run gemma2 ``` 每种模型都有各自独特的优势以及适用范围,在实际应用过程中可以根据具体业务需求挑选最合适的一款来进行集成使用。对于希望快速验证想法的研究人员来说,利用像 Ollama 这样的工具可以在不牺牲灵活性的前提下简化整个流程[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

go2coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值