在数字化浪潮席卷全球的今天,数字经济已成为推动全球经济增长的新引擎。而数据、算法和算力构成了数字经济的三大支柱,它们相互依存、相互促进,共同支撑着数字经济的蓬勃发展。它们各自具有独特的特点,相互区别又紧密关联,并且都拥有广阔的发展前景。本文将深入探讨这三大要素如何共同推动数字经济的发展,以及它们之间的相互作用和影响,揭示数字经济背后的核心技术框架和增长动力。
1. 数据:数字经济的基石
1.1 数据的定义、特征和分类
数据是数字经济时代最重要的生产要素之一,是数字经济的基石,被形象地比作"新时代的石油"。广义的数据泛指一切客观事物的数字化表示,包括文本、图片、音视频、传感器数据等各类信息,能够被计算机识别、存储和处理。狭义的数据特指经过采集、清洗、加工,能用于分析挖掘的信息资源。大数据技术的发展,让海量、多源、异构、时变的数据资源成为推动经济社会发展的新引擎。
数据具有颠覆性的独特属性。一是非竞争性,即数据可以被多次、多方使用而不损耗价值,边际成本几乎为零;二是非排他性,即数据很难排除他人的访问和使用,容易产生"搭便车"行为;三是可复制性,数据可以极低成本地被复制传播,很难控制数据的扩散;四是差异性,不同维度、不同来源的数据价值差异巨大,很难统一定价;五是关联性,单一数据很难产生价值,往往需要与其他数据融合关联才能创造价值。正是由于这些特性,数据要素在确权、定价、交易、监管等方面呈现出与传统要素截然不同的特点。
按照数据的来源可以分为内源数据和外源数据。内源数据主要包括企业内部产生的业务数据、管理数据、财务数据等,外源数据则主要包括通过物联网、互联网采集的用户数据、行为数据、环境数据等,以及从第三方购买的数据资源。从数据形态看,还可分为结构化数据、半结构化数据和非结构化数据。结构化数据一般以二维表形式存在,包括关系型数据库、电子表格等;半结构化数据虽然也有一定结构,但无需遵从固定格式,包括XML、JSON等;非结构化数据则没有预定义的格式,包括文本、图片、音视频等。不同类型的数据在采集、存储、分析、应用中有不同的技术特点。
大数据时代数据的爆发式增长
进入21世纪,特别是智能手机、物联网设备的广泛普及,让数据呈现出爆发式增长态势。据IDC预测,2020年全球数据总量为47ZB(1ZB=1万亿GB),到2025年将突破163ZB。这一爆炸式增长的数据量,不仅包括结构化数据,如交易记录和数据库,还包括非结构化数据,如社交媒体帖子和视频内容。**数据的特征主要体现在其体量巨大(Volume)、生成速度快(Velocity)、种类繁多(Variety)、真实性(Veracity)和价值密度低(Value)。**海量数据的产生,为各行各业提供了前所未有的增长机遇。大数据(Big Data)技术应运而生,其核心是利用分布式存储、分布式计算等技术,对海量、多源、异构数据进行采集、管理和分析,快速挖掘数据价值,指导业务优化决策。大数据通过机器学习、深度学习等人工智能技术,极大提升了对海量非结构化数据的理解和预测能力,让数据价值从统计分析向知识发现、策略优化拓展。
大数据的价值主要体现在三个方面:一是业务洞察,即通过数据分析了解用户特征、优化产品设计、指导精准营销等;二是流程优化,即通过数据分析改进业务流程、提高运营效率,如库存管理、物流配送等;三是风险管控,即通过数据分析识别潜在风险隐患,预防欺诈、违规等行为。大数据的应用已经渗透到工业、农业、交通、金融、医疗、教育等各行各业,成为新一轮产业变革的底层逻辑。
1.2 数据采集、存储、清洗和管理
高质量的数据是大数据应用的前提,涉及数据全生命周期管理。数据采集是数据管理的起点,需要涉及从各种来源收集信息和获取结构化、非结构化数据**,**对内,要采集企业各业务系统、各环节产生的数据;对外,要利用爬虫技术采集互联网开放数据,利用传感器、物联网采集实时数据,并且通过数据交易获取第三方数据。采集数据要兼顾广度、深度和准确性,并对采集行为进行必要的合规审查。据Gartner预测,到2025年,全球IoT设备的数量将达到252亿个。
数据存储是为数据的管理和应用奠定基础。传统的关系型数据库在海量数据场景下,面临扩展性差、查询分析效率低等问题。大数据时代,分布式存储、NoSQL数据库、数据湖等新型数据存储架构不断涌现。分布式文件系统如HDFS能够提供高吞吐量的数据访问能力;NoSQL数据库摆脱了关系型数据库的约束,支持灵活的数据模型和弱事务特性;数据湖通过对源数据的无序存储,在成本和性能间达成了平衡。混合架构逐渐成为主流,即面向结构化数据采用关系型数据库,面向海量数据采用HDFS等分布式存储,面向半结构化和非结构化数据采用NoSQL数据库。
数据清洗是提高数据质量的重要环节。由于数据来源的多样性,往往存在不一致、重复、缺失、异常等问题,需要通过一系列处理提升数据的准确性、完整性和一致性。常见的数据清洗方法包括异常值检测、重复值处理、缺失值填充,以及数据格式转换、数据脱敏等。数据清洗可以借助Kettle、Informatica等ETL工具实现工作流式处理,将多源异构数据转换为标准化、关联化的数据,为后续分析挖掘打下基础。
数据管理则贯穿采集、存储、处理、应用的始终。元数据管理通过主数据、数据血缘、数据字典等,对数据资产进行统一编目管理;数据质量管理通过DQC工具,对关键数据的准确性、完整性、一致性进行持续监测和改进;主数据管理通过MDM平台,实现关键业务实体数据的统一视图和集中管控;数据安全与隐私保护通过脱敏、加密、访问控制、审计等手段,确保数据全生命周期的安全合规。建立人人都是数据的使用者和贡献者的数据文化,通过可视化、数据服务等赋能业务人员,是数据管理向数据治理升级的重要方向。
数据挖掘和数据分析方法
数据挖掘和数据分析是发现数据价值的关键手段。数据挖掘强调从海量数据中发现隐含的、事先未知但又有价值的信息,主要涉及分类、聚类、关联、预测等任务。分类旨在根据样本的特征属性,判断其所属类别,如垃圾邮件识别;聚类则将物理或抽象对象划分为多个类的过程,如客户群划分;关联分析用于发现数据项间的关联模式,如购物篮分析;预测则对某一指标的未来进行估计,如销量预测。数据挖掘一般采用决策树、神经网络、支持向量机等机器学习算法,工具有SAS EM、SPSS Clementine等。
数据分析则强调从各类数据中提取有价值的信息,并基于信息形成对行业情况、业务状况、发展趋势的认识和判断。按照分析的逻辑层次,可分为描述分析、诊断分析、预测分析、规范分析四类。描述分析如各类统计报表,用于总结和展现数据特征;诊断分析如根本原因分析,通过探索事物内在联系发现问题根源;预测分析则对未来情况、趋势作出预判,指导当前决策部署;规范分析则给出应该采取的行动方案,优化资源配置。数据分析采用可视化、OLAP等技术,通过Tableau、PowerBI等工具实现。
大数据时代数据挖掘分析还呈现出新的趋势:一是从静态、历史数据向动态、实时数据分析发展,流数据、时间序列数据分析成为热点;二是从单一结构化数据向多源异构数据融合发展,图数据、文本数据、多模态数据分析成为重点;三是从浅层模式发现向深层关联挖掘发展,图神经网络、因果推理、知识图谱成为前沿;四是从中心化数据汇聚向联邦学习、隐私计算发展,在不泄露隐私的前提下开展数据融合分析。数据科学已成为复合交叉的新兴领域,亟需培养专业复合的数据科学家人才。
数据可视化和数据应用案例
数据可视化是数据分析不可缺少的部分。可视化通过图形化手段,将数据中蕴含的信息、模式和规律直观呈现,帮助人们快速理解数据背后的洞察。可视化需要遵循准确性、清晰性、美观性、创新性等原则,运用色彩、布局、交互等设计元素,提升数据展现的吸引力和感染力。常用的可视化图表包括柱形图、折线图、饼图等统计图表,散点图、雷达图、热力图等对比图表,以及地图、树状图、关系图等复合图表。此外,动态可视化、交互式可视化、沉浸式可视化也是重要发展方向。除通用的BaTable、PowerBI等可视化工具外,越来越多的可视化类库也被开发出来,如D3.js、ECharts、Highcharts等,满足个性化定制需求。
数据分析已成为各行各业提质增效、创新发展的利器,催生出大量应用案例:
(1)零售行业:沃尔玛利用销售数据进行商品关联分析,优化货架陈列,实现精准营销;亚马逊利用用户行为数据进行个性化推荐,提高转化率和客单价。
(2)金融行业:花旗银行通过信用卡交易数据分析客户价值,开展差异化服务;京东金融利用大数据构建银行风控模型,显著提升风险识别能力。
(3)制造行业:通用电气利用设备联网数据进行预测性维护,减少非计划性停机时间;格力电器利用生产数据优化车间调度,提高生产效率和良品率。
(4)交通行业:滴滴利用海量出行数据进行实时调度,缓解打车难;航联科技利用机票销售数据预测客流量,优化机票价格和航线网络。
(5)医疗行业:华大基因利用基因测序数据开展精准医疗,支撑个性化诊疗;平安好医生利用患者病历数据进行辅助诊断,提高诊断效率和准确率。
这些案例展现了数据价值变现的广阔前景。未来,随着5G、物联网的建设,数据爆发将进一步加速,也对数据分析能力提出更高要求。打通数据壁垒,充分利用内外部数据,建立敏捷高效的大数据平台,完善数据资产管理和安全防护,培育基于场景的行业数据解决方案,成为各行各业的当务之急。
1.3 数据资产化和数据要素市场
数据作为新的生产要素,越来越多地参与价值创造、价值交换和价值分配,数据资产化成为必然趋势。**数据的价值在于其能够提供信息,揭示规律,指导决策。**在数字经济时代,数据的分析能力直接关系到企业和组织的竞争力。例如,通过分析消费者数据,企业可以进行精准营销,提高转化率。据麦肯锡全球研究院报告,数据驱动的营销可以提高营销活动的回报率20%到30%。数据还广泛应用于产品创新、风险防控、供应链优化等领域。高质量的数据可以为政府治理提供科学决策支持,例如,通过分析交通数据,可以优化城市交通流量,减少拥堵。在科学研究领域,大数据的应用推动了新药研发、基因测序等前沿科学的发展。
数据资产是指数据在应用过程中所体现出的财产价值,能够给数据拥有者带来持续的收益。数据资产化就是将数据转化为可确权、可计量、可流通的资产的过程。一般涉及数据采集、数据清洗、数据加工、数据定价、数据交易等环节。数据采集和清洗是数据资产的基础,数据加工通过分析挖掘、知识提炼,赋予数据以更高价值,数据定价是数据资产化的关键,需要考虑数据的时效性、稀缺性、关联性等因素,数据交易则是数据资产变现的主要方式,可通过数据交易平台实现。
数据资产化的前提是明晰数据权属。数据具有非排他性、易复制等特性,在确权方面与有形资产有本质区别。我国民法典、数据安全法等明确了自然人的个人信息权益,但对企业、政府等主体的数据产权界定仍不明确,难以形成统一的司法保护。建立数据产权制度,厘清不同主体的数据权益边界,是发展数据要素市场的关键举措。比如可以针对不同类型的数据,分别赋予产权、使用权、收益权等权能。同时,还要加强数据确权配套服务,利用区块链、隐私计算、数字水印等技术手段,完善数据资产登记、流通、追溯机制。
数据要素市场是数据资产化的关键载体。目前,我国数据要素市场发展尚处起步阶段,呈现交易模式单一、定价机制不健全、服务体系不完善等特点。亟待加快顶层设计,制定市场准入、交易规则、行为监管等政策措施。比如在准入方面,建立分级分类的数据交易主体资质认证制度;在定价方面,构建统一规范的数据资产评估体系;在交易方面,鼓励培育形式多样的交易场景和交易模式;在服务方面,发展数据资产登记结算、争议仲裁、融资担保等中介服务。引导龙头企业、行业协会、科研机构共建共享数据开放平台,鼓励跨区域、跨部门、跨行业的数据流通共享。
当前,贵阳大数据交易所、上海数据交易中心等10余家数据交易所已经成立,在公共数据、企业数据、个人数据等细分领域率先开展了交易服务。中国信通院等单位编制的数据交易基本规范,为规范数据交易活动提供了参考。下一步,要进一步完善数据全流程生命周期价值管理,打通数据确权、定价、交易、流通等各个环节。推动政府数据开放共享,鼓励企业数据有序流通,保护个人数据合法权益,加快培育数字产业集群,构建万物互联、人机协同、跨界融合、共创分享的数据要素市场新格局。
1.4 数据安全、隐私保护和数据主权
数据是关系国家安全、企业发展、个人隐私的战略性资源。随着数据规模快速膨胀,跨境数据流动日益频繁,数据泄露、数据滥用等安全事件也频发,数据安全成为各国的重大议题。我国高度重视数据安全保护,陆续出台数据安全法、个人信息保护法等,为维护数据主权提供了法律保障。
数据安全是数字经济健康发展的底线,贯穿数据采集、传输、存储、处理、销毁等各个环节。数据管理者要全面梳理数据资产,围绕敏感数据开展分类分级保护,建立纵深防御体系。采集环节,应当坚持合法、正当、必要原则,不过度采集数据;传输环节,应当通过加密通信、访问控制等技术,防止数据被窃取篡改;存储环节,应当遵循最小化存储原则,及时删除过期数据;处理环节,应当全程记录数据流向,设置访问权限防止内部人员非法调用数据;销毁环节,应当采取物理销毁、多次覆写等措施,确保数据不可恢复。同时,还要开展数据安全风险评估、应急演练,提高数据安全事件发现和处置能力。
作为数据安全的重要内容,个人隐私保护已成为各国立法和执法的重点。我国个人信息保护法对个人信息的合法合规处理提出了明确要求,规定了告知同意、最小必要、公开透明、数据可携等基本原则。企业要严格落实相关规定,加强个人信息全生命周期管理。比如,收集个人信息时应当取得个人同意,保障个人对其个人信息的知情权;使用个人信息时,不得超出约定的处理目的、处理方式和范围;不再需要时,应当及时删除个人信息;发生或可能发生个人信息泄露时,应当立即采取补救措施,并通知个人和有关主管部门。此外,还要强化个人信息主体权利,提供更新、复制、转移等便捷的行权渠道。
在数字全球化浪潮下,数据跨境流动日益频繁。发达国家凭借技术、资本优势,加速向发展中国家转移数据中心,大量汲取数据资源,引发发展中国家对数据主权的担忧。美国出台跨大西洋数据隐私框架,欧盟出台通用数据保护条例,日本出台个人信息保护法等,无不体现维护数据主权的考量。我国也高度重视数据主权保护,数据安全法明确规定"国家主管机关负责组织协调数据跨境移动安全监管工作,可以对影响或可能影响国家安全、社会公共利益的数据实施出口管制"。下一步,还要出台数据跨境流动管理条例,完善数据出口管理清单、重要数据目录,加强对关键信息基础设施、重要数据等的安全审查,确立数据依法有序流动的基本原则。同时,积极参与全球数据治理,推动建立公平合理的国际数据治理规则体系,反对数据霸权主义,维护新兴经济体数字发展权益。
**数据,是信息的载体和表现形式。它可以是数字、文本、图像、音频、视频等各种形式。**数据的特点是海量、多样和价值密度低。大量的数据中蕴含着丰富的信息和知识,但需要通过算法和算力的处理和挖掘才能发挥其价值。**数据是数字经济的关键生产要素,无论是企业的决策制定、市场的趋势分析,还是科学研究的依据,都离不开数据的支撑。**随着物联网、互联网的普及,数据量呈现爆炸式增长。未来,数据的质量和安全性将越来越受到重视,数据的流通和共享机制也将不断完善,以实现数据价值的最大化利用。
数据具有规模报酬递增、非竞争性、低成本复制等特点,能够作用于不同主体,与不同要素结合,产生不同程度的倍增效应
2. 算法:数字经济的智慧引擎
2.1 算法的概念、分类和发展
算法是解决特定问题确切而完整的计算过程,是数字经济时代价值创造的关键驱动力。从古代算筹、机械计算,到现代计算机算法,再到人工智能算法,算法推动人类不断突破计算鸿沟。特别是进入人工智能时代,深度学习算法模拟人脑神经元,让计算机具备了感知、决策、推理、预测等智能化能力,成为经济数字化转型的核心引擎。
按照设计思路,算法可分为确定性算法和非确定性算法。确定性算法对相同输入总是产生相同输出,执行路径固定,如排序算法;非确定性算法可能出现多种运行路径,对相同输入可能产生不同输出,如遗传算法。按照时间复杂度,可以分为多项式时间算法和非多项式时间算法。前者能在多项式时间内完成任务,如最短路径算法;后者完成任务所需时间随问题规模呈指数级增长,如旅行商问题的动态规划算法。此外,还可以按照算法的应用领域、解题策略等进行分类。
现代算法经历了三个主要阶段:第一阶段是经典算法时期,强调利用数学方法构造最优解,包括排序算法、查找算法、图论算法等,多为确定性算法;第二阶段是启发式算法时期,面对NP难问题,从问题本身出发寻找满意解,包括模拟退火、遗传算法、蚁群算法等,多为非确定性算法;第三阶段是智能优化时期,利用机器学习算法让计算机自主学习优化策略,代表算法包括神经网络、决策树、支持向量机等。不同时期算法在设计思想、数学基础、应用场景等方面差异显著,但都体现了算法对经济社会发展的重要驱动作用。
机器学习算法:监督学习、无监督学习、强化学习
机器学习是人工智能的核心,其本质是通过算法让计算机系统从数据中自主学习,不断改进和优化模型,提高对未知数据的预测能力。根据训练数据是否带有标签,机器学习主要分为监督学习、无监督学习和强化学习。
监督学习是利用已知类别的样本训练分类器,对未知类别的样本进行分类。给定一组由输入和预期输出组成的样本,通过训练寻找一个最佳函数,将输入映射到输出。代表算法包括决策树、支持向量机(SVM)、逻辑回归、朴素贝叶斯、K近邻、Adaboost等。监督学习在数字经济领域应用广泛,如垃圾邮件识别、人脸识别、语音识别、信用评分、故障诊断等。
无监督学习则只给定输入样本,而没有预期输出。算法通过对无标签数据的学习,发现数据内在结构和规律。常见任务包括聚类、降维、关联、异常检测等。聚类将物理或抽象对象组织成多个类的过程,代表算法有K-means、DBSCAN等;降维是在保留数据特征的前提下,将高维数据转换为低维数据,代表算法有主成分分析(PCA)、奇异值分解(SVD)等;关联分析用于发现隐藏在大规模数据集中的有趣关联和相关联系,代表算法有Apriori、FP-growth等;异常检测则识别出偏离正常模式的罕见项目、事件或观测值,在欺诈检测、入侵检测等领域应用广泛。
强化学习通过智能体与环境的交互,根据环境反馈的奖励或惩罚,不断调整策略,最大化长期累积奖励。与监督学习和无监督学习相比,强化学习更注重目标导向和探索优化。代表算法包括Q学习、Sarsa学习、蒙特卡洛树搜索等。强化学习在不确定环境下序贯决策能力突出,在自动驾驶、智能游戏、机器人控制等领域崭露头角。如AlphaGo利用深度强化学习,战胜了人类围棋冠军。
机器学习虽然取得了长足进展,但在一些领域其性能和泛化能力仍不及人类。亟需在小样本学习、迁移学习、联邦学习、持续学习等方向加强研究,让机器学习模型更好地适应复杂多变的现实场景。此外,机器学习的可解释性不足,容易产生偏见和歧视等问题,必须强化机器学习的可信、可控、可用,确保其在社会经济活动中安全、公平、有益。
2.2 算法在数字经济中的作用
在数字经济中,算法的应用无处不在,无论是搜索引擎的排序机制、推荐系统的个性化推送,还是金融风险评估、医疗影像诊断等,都离不开算法的支持。算法在数字经济中的作用体现在以下几个方面:
- 提高效率:通过自动化和优化流程,算法能够提高生产效率和运营效率。例如,算法可以在供应链管理中优化库存,减少成本。
- 增强决策:算法能够处理和分析大量数据,为决策者提供更准确的洞察和建议。在金融领域,算法交易能够基于复杂数学模型做出快速交易决策。
- 创新服务:算法推动了新服务和产的发展,如推荐系统、智能助手等,这些服务改善了用户体验,创造了新的市场机会。
- 个性化体验:算法能够根据用户行为和偏好提供个性化内容,这在电商、娱乐和教育等领域尤为重要。
算法的应用场景和案例分析
算法是数字经济时代的核心引擎,其应用领域广泛、应用场景丰富,几乎渗透到社会经济生活的方方面面。从消费互联网到产业互联网,从数字政府到智慧城市,处处可见算法的身影。
在消费互联网领域,算法驱动着个性化推荐、智能搜索、用户画像等应用创新。如抖音的推荐算法精准捕捉用户兴趣,日均播放量超过2000亿;微博的热搜算法自动发现社会热点,聚合全民关注的焦点话题;京东的智能供应链算法优化库存管理,减少供需错配;美团的智能配送算法通过订单聚合,提高骑手收入水平。算法让互联网平台更懂用户,激发了海量长尾需求。
在产业互联网领域,算法为传统行业数字化转型插上翅膀。如在制造业,算法驱动设备预测性维护、柔性化生产、智能排产等应用,通过对设备状态、工艺参数、物流数据的实时分析优化,实现产能和效益的双提升。海尔COSMOPlat平台通过算法分析用户个性化需求,实现大规模定制生产。在零售业,算法应用于客流分析、智能导购、无人值守等场景,以数据驱动精准营销。盒马会员数据平台通过算法分析消费特征,实现千人千面的个性化服务。在金融业,算法驱动智能投顾、智能风控、智能客服等场景创新。蚂蚁金服通过算法分析海量交易数据,打造了全球领先的智能风控引擎。算法成为产业数字化的"发动机"。
在数字政府领域,算法让政务服务更智能、更高效。如在"互联网+政务服务"中,算法通过对海量政务数据的关联分析,让群众少跑腿、数据多跑路,实现一网通办、一次办成。在"互联网+监管"中,算法通过对企业数据的多维分析,精准刻画企业风险,实现以"数"治"理"。在"互联网+民生"中,算法通过教育、医疗、社保等数据的融合应用,提供个性化的精准服务。浙江"最多跑一次"改革通过算法精简办事流程,让数据"跑"起来、群众少"跑"腿。算法让政府治理更加智能精准。
在智慧城市领域,算法为城市管理和民生服务赋能。如在城市交通领域,算法优化交通信号配时、公交线路规划,缓解城市拥堵;在城市安防领域,算法加强人像识别、行为分析,提升社会治安水平;在城市应急领域,算法强化灾害预警、资源调度,提高城市韧性;在智慧社区领域,算法用于人员通行、车辆管理、环境监测等,提升居民生活品质。杭州城市大脑通过算法实现交通优化、城市管理、产业服务的全栈智能化。算法让城市更聪明、更宜居。
但算法也带来了伦理、安全等风险隐患。算法可能放大数据中的偏见,产生歧视和"马太效应";算法的不透明、不可解释,损害了用户的知情权和选择权;算法对海量数据的"过度提取",侵犯了个人隐私;人工智能的失控风险不容忽视。如何实现负责任、可信赖的人工智能,需要从算法、数据、流程等多维度系统施策。这包括加强算法的可解释性、公平性研究,完善智能系统的可审计机制,建立健全数据治理和隐私保护机制,推动人机协同的混合增强智能等。让智能更透明、更普惠、更可控,实现人工智能造福人类,是应用创新必须坚守的价值理念。
2.3 算法的发展趋势和前沿探索
算法发展日新月异,新理论、新框架、新应用不断涌现,总体呈现以下趋势:一是算法从浅层模型走向深层模型,让智能系统突破人类设计的局限,实现端到端学习;二是算法从单一模态走向多模态融合,让智能系统更全面地理解视听觉信息,回答"是什么"和"在哪里"的问题;三是算法从单一任务走向多任务协同,让智能系统具备更强大的常识推理和迁移学习能力;四是算法从数据驱动走向知识引导,让智能系统告别从零学习,积累可复用的结构化知识;五是算法从封闭训练走向开放进化,让智能系统像人类一样持续学习、持续成长。总之,未来的算法将更加复杂、更加自主、更加普适,不断向通用人工智能的目标迈进。
但与此同时,算法研究也面临诸多新的挑战。从理论基础看,当前算法缺乏对因果机制、逻辑推理的建模,亟需从数据关联走向因果发现;从学习范式看,当前算法主要采用监督学习,亟需探索自监督、半监督、主动学习等更高效的范式;从优化方法看,SGD、Adam等优化器面临收敛速度慢、易陷局部最优等问题,亟待更高效、更鲁棒的优化算法;从泛化能力看,当前算法容易过拟合,在分布外和对抗样本上表现不佳,亟需增强模型的外推能力;从计算效率看,算法参数高度冗余,模型的存储和推理成本高企,亟需探索模型剪枝、知识蒸馏、参数量化等性能优化技术。
为应对上述挑战,学界和业界正在多个前沿方向开疆拓土:
一是自监督学习。不同于监督学习需要大量标注数据,自监督学习让模型通过自我生成监督信号,从无标注数据中自主学习通用特征。对比学习、生成式预训练等范式,为NLP、CV等领域注入了新动力。二是元学习。传统机器学习依赖大量同分布数据,泛化能力有限。元学习让模型具备跨任务的快速学习能力,更好地适应环境变化。MAML、Prototypical Network等算法,让小样本学习成为可能。三是类脑智能。当前神经网络虽然灵感来源于大脑,但结构上存在巨大差异。类脑计算通过brain-inspired架构,如记忆网络、胶囊网络、脉冲神经网络等,让智能系统向大脑学习,实现更鲁棒、更高效的认知。四是可解释性。当前深度学习模型是一个黑盒,缺乏可解释性。因果建模、反事实推理等方法,让模型决策更加透明,有助于构建可解释、可信赖的人工智能系统。五是隐私计算。当前机器学习普遍需要集中数据,隐私泄露风险突出。联邦学习、多方安全计算等技术,让数据所有者无需共享原始数据,即可协同建模,有望破解大数据时代"数据孤岛"和数据隐私的两难困境。
可以预见,随着大数据、高性能计算、认知科学、脑科学等多学科交叉融合,人工智能领域必将孕育出更多变革性技术。从感知智能、认知智能再到人机协同智能、群体智能,人工智能将助力人类不断突破认知极限,在更广阔的疆域遨游。但与此同时,人工智能的失控风险、失业风险、伦理风险也日益凸显。建立人机共生、和谐可信的智能社会,将是人工智能研究的终极命题。
算法的创新和发展趋势主要表现在以下几个方面:
- 深度学习:深度学习算法,尤其是卷积神经网络(CNN)和循环神经网络(RNN),在图像识别、语音识别和自然语言处理等领域取得了突破性进展。
- 强化学习:强化学习算法在不断进化,它们在游戏、机器人控制和自动驾驶等领域的应用越来越广泛。
- 可解释性:随着算法在关键领域的应用增加,对算法的可解释性需求也在增长。研究人员正在开发新的算法和技术,使算法的决策过程更加透明和可解释。
- 隐私保护:在数据隐私法规日益严格的背景下,隐私保护算法如差分隐私和同态加密等技术正在发展,以确保数据处理过程中的隐私安全。
- 跨学科融合:算法的发展不再局限于计算机科学领域,而是与其他学科如认知科学、心理学等交叉融合,推动算法的创新和发展。
算法的创新和发展将继续推动数字经济的进步,为各行各业带来革命性的变化。随着技术的不断进步,算法将在提高生产效率、优化决策、创造新服务等方面发挥更大的作用。
算法在数字经济中扮演着核心角色,算法是处理数据、提取价值的关键工具,它能够对数据进行深度挖掘和分析,发现数据中的隐藏规律和模式,它们是实现数据处理、分析和应用的一系列指令和规则。根据其功能和应用场景,算法可以分为以下几类:
- 分类算法:用于将数据分配到不同的类别中。例如,在金融领域,分类算法可以帮助识别和预防欺诈行为。
- 聚类算法:旨在将数据集中的样本划分为若干个组,使得同一组内的样本相似度高,不同组之间的样本相似度低。聚类算法广泛应用于市场细分和社交网络分析。
- 回归算法:用于预测连续值,如房价或股票价格。回归算法在经济预测和风险评估中发挥重要作用。
- 强化学习算法:通过与环境的交互来学习如何做出决策,强化学习在自动驾驶和游戏AI中有着广泛应用。
算法的功能不仅限于数据处理,还包括模式识别、预测分析、优化决策等,它们是数字经济中智能化和自动化的驱动力。
算法,则是一系列解决问题的清晰指令。它是计算的逻辑和方法,是实现任务的步骤和流程。好的算法能够以更高效、更优化的方式利用算力和处理数据。算法具有多样性和创新性的特点,不同的算法适用于不同的问题和场景。比如,排序算法、搜索算法、机器学习算法等。算法的优劣直接影响到计算的效率和结果的准确性。在人工智能领域,算法的突破推动了图像识别、语音识别、自然语言处理等技术的飞速发展。未来,算法将继续朝着更智能、更自适应的方向发展,能够更好地处理复杂多变的现实问题。
3. 算力:数字经济的驱动力
3.1 算力的内涵和评估指标
算力,即计算能力,是指计算机系统处理信息和执行计算任务的能力。从个人电脑的CPU到云计算中心的大规模服务器集群,从边缘计算到量子计算,算力的提升为数据的快速处理和算法的高效执行提供了可能。随着大数据和人工智能技术的快速发展,算力的需求不断增长。算力不仅是数字经济的基础设施也是技术创新的重要支撑。在数字经济时代,算力已成为衡量一个国家或地区科技竞争力的关键指标,被誉为数字经济的“发动机”和核心驱动力。
- 算力的定义:算力不仅包括传统的CPU计算能力,还涵盖了GPU、TPU等专用处理器的能力,以及云计算、边缘计算等分布式计算能力。算力的单位通常以FLOPS(每秒浮点运算次数)来衡量,从GFLOPS到EFLOPS不等,反映了不同规模和类型的计算系统的性能。
- 算力的重要性:算力是实现数字化转型的基础,是支撑数字经济算法模型训练和应用的计算能力,是数字经济时代的战略资源。它支撑着大数据分析、人工智能、云计算等技术的发展。强大的算力能够加速新药研发、天气预报、基因测序等领域的科学研究,缩短产品开发周期,提高生产效率。高效的算力能够加速数据的处理和分析,提升算法的执行效率,从而推动数字经济的发展。算力的提升直接关系到科技创新的速度和深度,对经济增长、产业升级和社会进步具有重要影响。据《2021-2022全球计算力指数评估报告》显示,计算力指数每提高1点,数字经济和GDP将分别增长3.5‰和1.8‰,凸显了算力对经济发展的重要推动作用。
从广义看,算力是数字化时代的算术运算能力,包括CPU、GPU、FPGA、ASIC等处理器的运算速度,也包括内存、存储、网络等信息处理单元的性能指标;从狭义看,算力主要指芯片在单位时间内完成的浮点运算次数,是衡量计算机系统进行科学计算的重要指标。随着人工智能、大数据等新兴技术的快速发展,对算力的要求也从单一浮点峰值性能,逐步走向内存访问带宽、互联带宽、能效比等多维度综合评价。
算力水平的高低,取决于硬件和软件两个层面。在硬件层面,主要考察CPU、GPU等处理器的性能,如时钟频率、运算核心数、缓存容量、总线带宽等;在软件层面,主要考察操作系统、并行编程框架、编程语言等对硬件的调度和优化能力。二者相辅相成、缺一不可。从计算架构看,算力可以分为集中式和分布式两种模式。集中式算力将计算资源集中部署在高性能计算中心或数据中心,通过高速互联实现资源共享和协同,如超级计算机就是典型的集中式算力;分布式算力则将计算资源分散部署在网络边缘节点,通过松耦合方式动态聚合和调度,如云计算、边缘计算就是典型的分布式算力。随着计算任务的复杂化和数据的爆炸式增长,分布式协同成为算力发展的必然趋势。
当前,算力水平主要通过TOP500、Graph500、Green500等权威榜单考核。TOP500根据高性能计算机的Linpack测试结果,评选出全球运算速度最快的500台超级计算机;Graph500则侧重图数据分析能力,评价高性能计算机处理大规模复杂网络的能力;Green500关注超级计算机的能源效率,期望在提升算力的同时降低能耗。此外,还有HPL-AI榜单聚焦人工智能负载性能,HPCG榜单聚焦实际应用性能,反映了算力评价的多样化需求。我国在上述榜单均取得长足进步,超算数量和性能跃居世界前列。但在芯片等核心领域与发达国家还存差距,亟需从基础研究、技术攻关、应用优化等方面系统发力,补齐短板、锻造长板。
当前,算力正成为国家战略科技力量体系的重要组成。我国将算力定位为数字经济时代的关键生产要素,加快布局算力基础设施建设。中央算力枢纽、省级算力枢纽、边缘算力节点加速部署,"东数西算"工程加快实施,国家超算应用创新平台启动建设。到2025年,我国将初步形成国家算力网络,算力规模和算力效率跻身世界前列。算力正成为数字中国、智能社会的底座工程。
CPU、GPU与云计算
CPU和GPU是支撑通用计算和智能计算的核心芯片。CPU即中央处理器,是计算机的运算和控制核心。传统CPU采用冯·诺依曼架构,通过控制器、运算器、存储器等部件协同工作,擅长逻辑控制和串行处理,在通用计算任务上具有灵活高效的特点。从1971年英特尔推出首款商用微处理器4004,到1993年奔腾问世,再到2017年推出24核至强可扩展处理器,CPU经历了指令集扩展、多核化、片上系统等一系列重大变革,成为IT产业创新发展的核心引擎。
GPU即图形处理器,最初主要应用于图形图像渲染加速。2006年,NVIDIA推出CUDA编程框架,开启了GPU通用计算(GPGPU)的新纪元。GPU拥有数千个运算核心,采用单指令多数据(SIMD)流式处理架构,可在一个时钟周期内对大量数据并行处理,在人工智能、科学计算等数据密集型领域优势突出。特别是深度学习兴起后,GPU成为神经网络加速训练和推理的主力芯片。2016年,谷歌发布TPU专用芯片,进一步引领了AI芯片的发展潮流。目前,GPU在人工智能训练市场份额超过97%,成为人工智能产业发展的磐基石。
云计算将分散的IT资源,如服务器、存储、网络等,整合为一个共享的资源池,通过虚拟化、容器化等技术实现资源的弹性供给和按需服务,是IT基础设施的革命性变革。云计算具有海量存储、超强计算、随需应变、按需服务等特点,从基础设施、开发平台到软件应用,全面重塑了IT服务交付模式。经过IaaS、PaaS、SaaS三个阶段演进,云计算已成为数字经济时代的关键基础设施。2006年,亚马逊推出AWS弹性计算云,开启了云计算元年。此后,微软Azure、谷歌云、阿里云等一大批云计算平台如雨后春笋般涌现。目前,全球云计算市场规模超过2000亿美元,预计到2025年将突破5000亿美元。我国云计算产业进入跃升期,阿里云稳居亚太第一,华为云、腾讯云、百度云等民族品牌竞相发力,"中国云"正加速弯道超车。
云计算从资源层到算法层打通数据壁垒,构筑了人工智能发展的底座。一方面,云计算将存储和计算能力下沉至用户端,让数据触手可及、算力唾手可得,极大降低了人工智能的准入门槛;另一方面,云计算的弹性扩展特性,让人工智能应用获得了近乎无限的算力支撑,再庞大的模型、再海量的数据,都能轻松驾驭。预训练模型的快速发展,云原生架构的日趋成熟,标志着云智融合进入新阶段。从云智一体到云网边端协同,将是未来的重要方向。
超级计算机和量子计算
超级计算机是算力的集大成者,通过海量CPU并行计算,在气候预测、生物制药、材料模拟等关乎国计民生的重大科学工程领域发挥不可替代的作用。追溯超算发展史,从1964年CDC 6600问世,到1976年Cray-1诞生,再到上世纪90年代"地球模拟器"登顶,超算性能经历了百万亿次、千万亿次、万万亿次的跃迁。进入新世纪,中国超算异军突起,从2010年"天河一号"登顶TOP500,到2013年"天河二号"蝉联冠军,再到2016年"神威·太湖之光"以93千万亿次浮点运算的峰值性能刷新纪录,标志着中国超算跃居世界第一梯队。“天河三号”、"神威·exascale"等E级超算的研发也在加速推进,有望继续引领超算的发展潮流。
然而,传统超算正遭遇三大挑战:一是摩尔定律效应减缓,芯片性能和能效提升乏力;二是数据访存墙问题突出,内存带宽和延迟制约系统性能;三是应用负载结构剧变,传统CPU架构难以适应人工智能、大数据等新型工作负载。为此,异构计算、数据中心级片上网络、新型存储介质等技术创新不断涌现,推动超算加速走向智能化、专用化、规模化。如"Summit"超算采用CPU与GPU异构融合架构,在人工智能训练和推理性能上实现百倍提升;"富岳"超算引入PCI Express片上网络,显著提高了内部互联带宽;硅光技术、忆阻器件则有望突破冯·诺依曼瓶颈,为超算插上存算一体的翅膀。未来超算将从单纯追求浮点性能,转向以应用驱动的全方位创新。
量子计算则采用全新的物理机制,有望在复杂优化、密码破译、药物筛选等领域取得重大突破。不同于经典计算基于比特,量子计算基于量子比特,利用量子叠加态、纠缠态等特性,在特定问题上展现出经典计算难以企及的优势。量子计算从理论构想到实际应用,先后经历了量子图灵机、量子线路、通用量子门等重要里程碑。1994年Shor算法的发明,让人们看到了量子计算破译RSA加密的巨大潜力;1998年量子退火机问世,开启了量子计算实用化的先河。进入21世纪,量子计算硬件与算法并驾齐驱,不断刷新纪录。如2019年,谷歌基于53量子比特的Sycamore处理器,实现"量子霸权";2020年,中国的"九章"光量子计算原型机诞生,在高斯玻色取样等特定任务上实现量子优越性。但受限于量子比特的噪声、退相干等问题,通用量子计算机仍遥遥无期,中短期内以特定领域的专用量子芯片为主。NISQ(中等规模噪声量子)设备的研制将是现阶段的重点。
量子计算是后摩尔时代的战略制高点,国内外科技巨头纷纷跑马圈地。IBM发布多款量子芯片,并推出Qiskit开源开发工具包;英特尔发布17量子比特芯片,采用硅自旋量子比特技术;谷歌推出Bristlecone量子处理器,拥有72个量子比特;阿里巴巴发布平头哥量子芯片,具备高精度读取功能。量子软件方面,从语言和编译器,到模拟器和调试器,再到优化和验证框架,一系列研发工具如雨后春笋般涌现。量子算法在组合优化、机器学习、量子化学等领域展现出诱人前景。如量子近似优化算法(QAOA),量子变分特征求解器(VQE)等,为解决NP难问题带来新的希望。量子机器学习通过量子数据编码、量子神经网络等,让经典学习算法的性能大幅跃升。尽管量子计算尚处"婴儿期",但其变革性、颠覆性影响已初现端倪。
边缘计算和雾计算
随着物联网、人工智能的快速发展,数据正从中心向边缘大规模迁移。Gartner预测,到2025年,超过75%的数据将在边缘侧产生和处理。边缘计算应运而生,其理念是将计算、存储、网络等资源下沉部署到靠近数据源头的网络边缘侧,就近提供智能化服务。通过数据本地化处理,边缘计算在时延、带宽、隐私等方面展现出显著优势:一是就近感知和处理,毫秒级时延满足实时性需求;二是减少数据中心传输,节省网络带宽成本;三是数据在本地存储分析,保护隐私安全;四是分散化自治管理,具备故障隔离和自愈能力。工业互联网、车联网、智慧城市等是边缘计算的典型应用场景。
雾计算与边缘计算理念相近,最早由思科提出,强调利用网络中路由器、接入点等设备,提供靠近物或数据源的计算、存储等服务,形成从云到物的连续计算范式。相比边缘计算,雾计算部署更加分散,强调不同层级节点间的协同,因此往往形成云-雾-边端的分层架构。OpenFog联盟围绕雾计算分层模型、接口规范等方面制定了一系列标准,推动产业互操作与集成创新。
边缘计算具有低时延、广连接、智能化的特点,但也面临资源受限、管理复杂、安全隐患等挑战。边缘芯片、边缘智能、隐私保护等技术创新不断涌现,助力边缘计算生态加速走向成熟。如智能手机基于NPU实现本地化学习,让AI从云端下沉到端侧;联邦学习、隐私计算等新范式,让分散数据不出本地即可协同建模,破解隐私与效用的两难困局;轻量级区块链让分布式账本嵌入边缘,基于智能合约实现可信协同。从感知、决策到执行,从端云协同到端边云融合,边缘计算正成为人工智能落地的关键一环。
未来,5G、物联网的大规模部署将进一步推动边缘侧应用创新,电信运营商、互联网厂商、工业制造商、城市管理者将在MEC、工业边缘、城市大脑等领域展开竞合。从中心云向分布式雾、边缘的迁移,从全栈IT能力向OT领域的渗透,将驱动计算形态走向"云智融合、雾智协同、端智赋能"的泛在智能新格局。中国信通院《泛在智能白皮书》展望,到2025年,全球将部署超过500亿个智能连接和50亿个智能终端,形成云网边端多层次、覆盖室内外的泛在算力新形态。边缘计算、雾计算将在其中扮演日益凸显的角色。
算力是数字经济的核心支撑。随着云计算、大数据、人工智能、区块链等技术的快速演进,呈现出硬件异构、软件云化、应用智能、服务化的趋势,从科学计算、商业计算,到消费计算,无处不在、无时不有,推动产业加速向智能化、融合化升级。
在云计算领域,算力是支撑IaaS、PaaS、SaaS三大服务模式创新的基石。一方面,算力规模化部署推动了云基础设施从单一架构向异构融合演进,CPU与GPU、FPGA、AI芯片等协同计算,为大数据、人工智能、高性能计算等应用提供了强劲动力;另一方面,算力云化封装简化了应用开发和部署流程,让用户以更低的成本、更快的速度获得IT资源,加速云原生、云智能时代的到来。从通用算力、AI算力,到边缘算力、专属算力,呈现出多样化、分层化、普惠化的特征,成为企业数字化转型和产业智能升级的"新引擎"。
在大数据领域,算力让企业从"以存储为中心"走向"以计算为中心",将"沉睡"的数据资产盘活,释放数据价值。从数据采集、存储,到数据分析、挖掘,算力无处不在。分布式存储、并行计算框架是大数据平台的算力支柱,为海量数据的高效处理奠定基础;流处理、图计算、内存计算等新型计算范式不断涌现,让大数据分析从批处理走向实时、从结构化走向非结构化。大数据与算力相互促进、互为支撑,共同驱动数据密集型应用创新。如实时风控、智能推荐、设备预测性维护等,无不以算力为中心,让企业从数据中获得洞察、制定决策、优化运营。
在人工智能领域,算力是模型训练和推理的核心驱动力。从语音识别到机器翻译,从图像分类到目标检测,从围棋博弈到通用对话,算法创新与算力进步相辅相成,让人工智能在认知智能、决策智能等方面不断取得新突破。以深度学习为例,算法从最初的浅层神经网络,发展到AlexNet、VGGNet、InceptionNet等深层网络,每一次突破都伴随着算力的跃升。如2012年AlexNet的问世,依赖于GPU算力的飞跃;2017年Transformer的发布,则得益于TPU等专用芯片和分布式训练平台。从云端算力到边缘算力,从通用芯片到专用芯片,从单一模型到多模态融合,算力让人工智能应用从中心走向边缘、从感知走向认知、从单点智能走向通用智能。智能驾驶、智慧医疗、智能金融、智能制造等行业应用蓬勃兴起,数字经济时代的序幕正徐徐拉开。
在物联网领域,算力让海量设备从简单连接走向智能协同。随着5G、边缘计算的发展,轻量化、小型化、低功耗的嵌入式芯片不断突破,让智能从云端下沉到终端,使能IoT设备就地感知、分析、执行,极大节省了数据传输带宽和时延。同时,端云协同、联邦学习等新型计算范式不断涌现,通过端边云纵向协同、跨域数据横向联合,形成覆盖全场景、全链条的分层智能。从智慧工厂的设备联网、数据采集,到智慧城市的物联感知、多维建模,再到数字孪生的映射仿真、实时控制,分布式算力成为物联网价值变现的关键抓手。随着泛在算力从概念走向现实,万物互联、人机物融合的美好愿景指日可待。
在区块链领域,算力是保障系统安全和性能的基石。工作量证明(PoW)机制下,算力竞争是维护区块链账本一致性的核心手段;权益证明(PoS)等新共识机制下,算力也是参与共识、获取奖励的重要筹码。算力能力的高低,决定了记账权的分配、交易速度的上限。从ASIC矿机到GPU矿池,从FPGA矿卡到量子芯片,算力军备竞赛从未停歇。与此同时,联盟链、许可链的兴起,让区块链从单纯记账走向智能合约,算力分布从链外装备走向链上资源,与分布式存储、图数据库深度融合,为供应链溯源、存证确权、资产证券化等提供可信算力支撑,让价值互联网加速走向成熟。
随着产业数字化、数字产业化进程的加速推进,云、数、智、链、端将加速融合,工业互联网、智能制造、智慧城市、数字政府、数字金融等新兴场景对算力提出了更高要求。IDC预测,到2025年,全球算力需求将突破1.15EB,是2020年的4倍。围绕通用算力、智能算力、专用算力,中国信通院提出打造国家算力网络,加快构建"2+8+N"的算力枢纽格局,到2025年将形成"东数西算、云边协同、算网融合"的泛在算力体系。从数据中心向算力中心转型,从单一架构向异构融合演进,从中心计算向泛在智能延伸,随着5G、Wi-Fi6等下一代信息基础设施的加速普及,随着量子芯片、类脑芯片、存内计算、硅光技术等新型算力载体的突破, "云智融合、数算一体"将成为数字经济时代的鲜明特征,引领数字中国建设进入新阶段。
算力产业的发展瓶颈和破局之道
尽管我国算力产业取得了长足进步,在超算、云计算、人工智能等领域跻身世界第一梯队,但产业生态仍不成熟,核心技术受制于人,亟需补齐关键领域短板,打造自立自强的现代化产业体系。当前,我国算力产业面临五大挑战:
一是高端芯片"卡脖子"。制程工艺受制于光刻机,EDA工具对国外依赖度高,高端通用芯片大量依赖进口,核心专利掌握在国外厂商手中,供给安全面临严峻挑战。二是软硬件适配不足。国产芯片与主流开源框架、操作系统的兼容适配仍有差距,生态构建尚待完善,影响了国产替代进程。三是算力基础设施总体不足。与发达国家相比,我国人均算力规模仍有差距,区域发展不平衡,高性能计算、智能计算基础设施亟需加快布局。四是核心算法对外依存度高。在操作系统、数据库、中间件、AI框架等基础软件领域,国外厂商占据了大部分市场份额,存在技术封锁和断供风险。五是行业应用深度不够。算力下沉和智能化改造有待深化,中小企业对算力的可获得性不足,行业算法模型构建尚不成熟,影响了算力价值释放。
破局之道,关键在于统筹需求牵引和前沿部署,在技术、产业、应用、生态等方面多管齐下,加快构建自主可控的现代化算力产业体系。
技术方面,要坚持应用牵引、体系化布局。聚焦通用计算、智能计算、量子计算等重点领域和前沿方向,加强顶层设计和战略规划,强化基础研究、应用基础研究和关键核心技术攻关,突破"卡脖子"难题。在芯片领域,加大EDA、光刻机、高端光刻胶等核心装备和材料的研发投入,加快先进封装测试能力建设,推动开源芯片生态构建,打造自主可控的现代化芯片产业链;在架构领域,面向通用计算和智能计算,加强软硬协同创新,探索类脑计算、存内计算、量子计算等颠覆性技术,抢占未来算力的制高点;在系统和应用领域,加强操作系统、数据库、AI框架等基础软件的自主研发,打通从芯片、框架到系统、应用的创新链条,形成具有竞争力的核心技术体系。
产业方面,要发挥政策引导和市场机制双轮驱动作用,完善产业发展的顶层设计和体制机制,推动关键环节的改革突破。在政策引导方面,制定国家算力发展战略,加大财税、金融等政策支持力度,鼓励社会资本多渠道参与,营造良好的产业生态;在体制机制方面,探索符合算力特点的数据确权、隐私保护、安全监管等机制,推动垂直行业数据共享开放,完善算力市场化交易和定价机制,健全算力绿色低碳发展长效机制;在基础设施方面,超前谋划布局国家算力枢纽节点,加快"东数西算"等重大工程,推进数据中心绿色集约发展,助力云网融合、算网一体的泛在算力体系构建。
应用方面,要坚持需求牵引,聚焦重点行业和区域,深化算力赋能实体经济,打通创新链、产业链、价值链。在工业制造领域,加快工业互联网、CPS系统、数字孪生等新型基础设施建设,释放智能制造场景算力需求;在交通出行领域,加快自动驾驶、车路协同等领域算法突破和算力部署,推进城市智慧交通体系建设;在医疗健康领域,聚焦精准医疗、智慧医院等方向,加快人工智能医疗应用创新和临床数据汇聚;在文旅领域,推进沉浸式体验、虚拟现实等新业态发展,拓展算力融合应用新场景。同时,面向不同区域、不同发展阶段,制定差异化的算力赋能策略,引导东部地区算力向智能化、融合化升级,支持中西部地区承接算力外溢,补齐基础设施短板,助力城乡数字化发展和区域协调发展。
生态方面,要强化创新主体培育,完善产学研用协同创新机制,加快科技成果转化应用,营造开放包容、合作共赢的发展环境。在企业培育方面,实施"芯火"计划,支持具有核心竞争力的"专精特新"中小企业发展,引导龙头企业延伸产业链、完善生态圈,加快形成梯次发展、错位竞争的产业格局;在创新平台方面,以国家算力枢纽为依托,建设国家级算力创新中心、融合应用创新中心,推动科技资源开放共享;在人才培养方面,实施智能计算人才培养专项,鼓励校企合作共建实训基地,引导高校设置相关专业,完善多层次、多类型的人才培养体系;在国际合作方面,积极参与全球算力治理,推动制定数据跨境流动、算法伦理监管等国际规则,在更大范围、更广领域、更高水平上实现互利共赢。
算力是数字经济发展壮大的核心支撑。面对百年未有之大变局和世纪疫情的双重考验,只有心无旁骛推进关键核心技术攻关,加快现代化算力产业体系建设,才能掌握发展主动权,实现高水平科技自立自强。践行新发展理念,构建新发展格局,必须充分发挥算力赋能、数据赋智的巨大潜力,以算力变革催生发展新动能,以算力创新塑造发展新优势,加快建设数字中国、智造强国,在与世界的互联互通中实现共同发展,为人类文明进步贡献中国智慧、中国方案。
3.2 算力的发展与挑战
随着数字经济的快速发展,算力需求呈现出爆发式增长,同时也面临着一系列挑战。
- 算力规模增长:我国算力总规模已达到230EFLOPS,位居全球第二。算力规模的增长不仅体现在数据中心的扩张,还包括云计算、边缘计算等技术的快速发展。算力规模的增长为数字经济提供了强大的支撑,但同时也带来了能源消耗、环境影响等问题。
- 算力技术创新:算力技术的发展不断推动着计算效率的提升。例如,华为推出的鲲鹏、昇腾处理器,以及基于这些处理器构建的云计算平台,都在提升算力效率方面发挥了重要作用。然而,算力技术的创新也面临着高端芯片制造、核心算法研发等方面的挑战。
- 绿色算力:随着“双碳”目标的提出,绿色算力成为算力发展的重要方向。数据中心的节能降耗、清洁能源的使用、以及算力资源的优化配置,都是实现绿色算力的关键措施。尽管取得了一定进展,但绿色算力的实现仍需克服技术、成本等多方面的挑战。
3.3 算力与数字经济的关系
算力与数字经济之间存在着密切的联系,算力的发展水平直接影响着数字经济的质量和效益。
- 算力支撑数字经济:算力是数字经济的基础设施,它支撑着数字经济中的数据存储、处理和分析。强大的算力可以提高数据处理速度,降低成本,增强数字经济的竞争力。
- 算力促进产业升级:算力的发展推动了传统产业的数字化转型,通过智能化改造和数字化升级,提高了生产效率和产品质量,促进了新业态和新模式的发展。
- 算力与区域发展:算力资源的分布和利用情况直接影响着区域经济的发展。例如,“东数西算”工程通过优化算力资源配置,促进了东西部地区的协同发展,提高了区域经济的整体竞争力。
- 算力与国际竞争力:在全球范围内,算力已成为衡量一个国家国际竞争力的重要指标。算力的全球布局和国际合作,对于提升国家的国际地位和影响力具有重要意义。
综上所述,算力作为数字经济的驱动力,其发展水平和质量直接关系到数字经济的发展。随着技术的不断进步和创新,算力将在推动数字经济发展中发挥更加关键的作用。
算力,简单来说,就是计算能力。它是指计算机系统处理数据和执行任务的速度和效率。算力的强大与否直接决定了信息处理的快慢。从超级计算机到云计算中心,再到如今普及的边缘计算设备,算力的不断提升使得原本需要长时间处理的复杂任务能够在短时间内完成。其特点在于高度依赖硬件设施,如芯片的性能、服务器的规模等。强大的算力能够在短时间内处理海量的数据,为各种应用提供坚实的基础支持。例如,在天气预报、地质勘探、金融风险预测等领域,强大的算力可以进行复杂的模型运算和数据分析,提供更准确的结果。随着技术的不断进步,算力的发展前景十分广阔。未来,量子计算等前沿技术有望实现算力的指数级增长,进一步推动各行业的创新和变革。
4. 三要素的相互作用与影响
4.1 数据、算法和算力的相互依存
数据、算法和算力三者之间存在着紧密的相互依存关系,它们共同构成了数字经济的核心技术框架。
- 数据与算法的依存关系:算法需要数据作为输入,通过分析数据来提取信息、发现规律。没有数据,算法就无法发挥作用。根据IDC的报告,全球数据量预计将从2020年的44ZB增长到2025年的175ZB,这为算法提供了丰富的原料。同时,算法的进步也推动了数据的更有效利用,提高了数据的价值密度。
- 数据与算力的依存关系:大数据的存储和处理需要强大的算力支持。随着数据量的激增,对算力的需求也随之增长。算力的提升使得处理和分析大规模数据集成为可能,加速了数据价值的挖掘。例如,基于深度学习的图像识别算法需要大量的算力来训练模型,而算力的提升直接加快了这一过程。
- 算法与算力的依存关系:算法的优化和创新需要算力作为支撑。强大的算力可以加速算法的迭代和优化,提高算法的准确性和效率。同时,算法的进步也推动了算力技术的发展,如专门为深度学习算法设计的GPU和TPU。
4.2 三要素如何共同推动数字经济发展
数字经济引领新一轮科技革命和产业变革,重塑全球创新版图、重构全球经济结构。纵观全球,新一轮科技革命和产业变革方兴未艾,数字经济发展进入快车道。5G商用步伐加快,算力基础设施加速完善,大数据、人工智能与实体经济加速融合,智能制造、无人驾驶、智慧城市等新应用新场景不断拓展。2022年,全球数字经济规模达到47.6万亿美元,占GDP比重超45%。数字经济成为全球经济恢复发展的关键力量。
展望未来,数字化发展前景广阔。在需求端,后疫情时代,线上生活、智能生产等需求持续旺盛,为数字经济发展提供持久动力;在供给端,新一代信息技术加速突破,数据要素价值有望充分释放,为高质量发展提供有力支撑;在制度端,各国纷纷将发展数字经济提到国家战略高度,营商环境持续优化,为创新创业营造广阔空间。可以预见,未来5-10年,数字经济将成为重塑全球竞争力的决定性力量。IDC预测,到2025年,全球数字经济规模将突破60万亿美元,占GDP比重超55%。数据流、资金流、人才流加速在各产业部门横向渗透,数字产业化、产业数字化进程全面提速,智能化成为经济社会发展的普遍形态。
数据、算法和算力三要素共同推动了数字经济的发展,它们在不同层面上发挥作用,相互促进,形成了数字经济的增长引擎。
- 创新驱动:三要素的结合推动了技术创新。数据的增长为算法提供了训练材料,算法的进步又推动了算力技术的发展,而算力的提升进一步加速了新算法的研发和应用。这种循环驱动了数字技术的快速发展,为数字经济带来了新的增长点。
- 产业升级:数字经济三要素促进了传统产业的数字化转型。通过数据分析和算法优化,企业能够提高生产效率,降低成本,创造新的商业模式。算力的提升使得这些转型成为可能,加速了产业升级的步伐。
- 新业态培育:数据、算法和算力的结合催生了新的业态和商业模式。例如,大数据和算法的应用推动了精准营销和个性化推荐系统的发展,而算力的提升使得这些系统能够实时处理和分析海量用户数据,为用户提供更好的服务体验。
- 经济增长:数字经济三要素对经济增长的推动作用显著。根据《2021-2022全球计算力指数评估报告》,计算力指数每提高1点,数字经济和GDP将分别增长3.5‰和1.8‰。这表明,算力的提升直接促进了经济的增长,而数据和算法作为算力的支撑,也在其中发挥了重要作用。
综上所述,数据、算法和算力三者之间存在着紧密而深刻的联系。**算力是基础,为处理数据和运行算法提供强大的计算能力;算法是核心,决定了如何高效地处理数据和利用算力;数据是源泉,为算力和算法提供了“原料”和应用场景。**这三者相辅相成,缺一不可,形成了一个良性循环:数据的积累推动了算法的创新,算法的优化又提高了数据处理的效率和深度,而算力的提升则为更复杂的数据处理和更高级的算法应用提供了可能。这一循环不断加速,将继续深度融合,共同推动着数字技术的快速进步和社会的发展,为人类创造更多的价值和可能性,催生着新的业态和商业模式,为经济增长和社会进步提供了强大的动力。在数字经济时代,我们需要充分利用这些核心要素,推动数据的共享和开放,优化和创新算法,提升算力水平,从而推动数字经济的持续健康发展。同时,我们也需要关注数据安全、隐私保护等问题,确保数字经济的健康发展。数字经济是以数字化的知识和信息为关键生产要素,以现代信息网络为重要载体,以信息通信技术的有效使用为效率提升和经济结构优化的重要推动力的一系列经济活动。我们要积极拥抱这一数字时代的变革,不断探索和创新,充分发挥算力、算法和数据的潜力,开创更加美好的未来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。