基于纯视觉的 GUI 代理
很好玩,当你上传一张电脑桌面截图,或者手机截图,可以分析出这个界面所有的元素的位置。
这个在自动化定位中很有帮助,比如你想让你的代理 Agent打开 QQ
就可以用这个 开源软件, 先定位 QQ的位置,然后去让鼠标点击即可。
论文《OmniParser for Pure Vision Based GUI Agent》主要探讨了如何通过OmniParser方法,让计算机更好地理解和操作用户界面,就像人类一样。以下是该论文的详细解析:
摘要
论文指出,大型视觉语言模型(如GPT-4V)在处理用户界面时展现出了很大的潜力。然而,这些模型在不同操作系统和应用程序上的表现可能没有预期的好,因为它们缺乏一种强大的屏幕解析技术。该技术需要能够可靠地识别用户界面上可以点击的图标,理解截图中各种元素的意义,并准确地将用户的意图与界面上的相应区域联系起来。为了解决这个问题,研究者们提出了OmniParser方法,这是一种将用户界面截图解析为结构化元素的综合方法,显著增强了GPT-4V生成准确对应界面上区域的动作的能力。
方法
OmniParser方法的核心在于两个互补的模型:
-
检测模型:该模型在可交互图标数据集上进行了微调,能够可靠地识别屏幕截图中的可操作区域。
-
描述模型:该模型在图标描述数据集上完成了训练,用于提取检测到的元素的功能语义,为预期操作生成准确符合上下文的描述。
数据集
为了训练这些模型,研究者们创建了两个数据集:
-
可交互图标检测数据集:该数据集收集整理自常见的网页,其中可点击和可操作的区域都做了标注。
-
图标描述数据集:旨在将每个UI元素与其相应的功能关联起来,这对于训练模型以理解检测到的元素的语义至关重要。
实验与结果
研究者们通过多个基准测试评估了OmniParser的性能,包括ScreenSpot、Mind2Web和AITW基准测试。实验结果表明,OmniParser显著提高了GPT-4V在这些基准测试中的表现。特别是在Mind2Web和AITW基准测试中,仅使用截图输入的OmniParser的表现甚至超过了需要额外信息的GPT-4V基线模型。
讨论与结论
论文指出,OmniParser的主要贡献在于它让计算机能够更准确地理解用户界面,并能够更准确地执行用户意图。这种技术有望使计算机更智能地帮助我们操作各种应用程序。研究者们希望OmniParser能作为一种通用且易于使用的工具,在PC和移动平台上解析用户的屏幕,而无需依赖HTML和Android中的视图层次结构等额外信息。
实际应用
OmniParser的应用前景广泛。例如,它可以与GPT-4V等模型结合,创建能够理解并控制计算机的智能体。这些智能体可以执行复杂的任务,如自动填写表单、搜索特定信息或执行特定的应用程序操作等。
总结
《OmniParser for Pure Vision Based GUI Agent》论文提出了一种创新的屏幕解析方法,通过解析用户界面截图中的结构化元素,显著增强了大型视觉语言模型在处理用户界面任务时的性能。该方法具有广泛的应用前景,有望为计算机自动化和智能化领域带来重要的进展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。