【免费】3分钟实现满血DeepSeekR1+个人知识库+智能体,太香了!!

最近DeepSeek的热度持续攀升,网上也推出了各种层出不穷的玩法,让人眼花缭乱。

但是如果要真正选一个,帮助我们提升学习和工作效率的功能,一定是搭建个人知识库。

通过DeepSeek R1和Cherry Studio这对超强CP,就可以帮助我们轻松打造一个专属于个人的AI知识库。

完全不需要任何编程基础,也不用担心电脑的配置,关键是它完全免费!

上传几十份工作文档,三秒内它就能精准地帮我们去定位关键信息。

即使我们输入的这个问题非常的模糊,AI也能结合知识库的内容帮助我们快速地去做分析和推理,并且给到答案。

所以无论是查资料做分析还是写报告,效率直接起飞!

1.下载安装Cherry Studio

网址:https://cherry-ai.com/

首先来到Cherry Studio的官网,根据自己的电脑系统进行下载。

下载完成了之后,直接打开安装

2.调用API key🗝️

安装好了Cherry Studio之后,我们需要来到硅基流动的官网。

网址:https://cloud.siliconflow.cn/i/q8l3k1eV

关于如何去调用硅基流动的API,其实在我的上一期当中已经非常详细地讲过了,那我这儿就快速跳过⏩

首先还是来到这个地方的API密钥,然后大家可以看到,有一个叫新建API密钥,点击进入。

密钥描述你随便输入,就相当于对它做一个备注,然后新建

接下来你就会获得这样一串密钥

3.配置API

直接来到刚才安装好的Cherry Studio,找到设置。

然后大家点击硅基流动的选项,直接把刚才的那个API密钥粘贴过来,地址大家直接复制我这个就可以了。(https://api.siliconflow.cn)

最重要的一步来了!就是需要去做一个模型的添加

我们直接把DeepSeek R1的这个模型输进来,点击添加模型

然后点击右上角的检查

选择到我们的R1模型,点击确定

ok,这个时候你会看到这个地方显示连接成功☑️

4.配置嵌入模型

连接成功之后呢,还需要一个嵌入模型。作用是将我们上传的这些文件转换成计算机容易理解的数字,然后储存到它的向量数据库当中。

也就是当我们在向它提问的时候,它就会利用rag技术。在这个数据库当中去搜索到相应的答案输出给我们。

所以我们需要回到硅基流动的这个主界面去配置一个嵌入模型。

那同样的也是在模型广场找到DeepSeek R1,点击嵌入,找到一个Beg M3的模型。

如果你想要搜索精度更高的话,你可以选Pro版本(需要付费)。

我这儿呢就以Beg M3为例,点击之后,把这个模型的名称复制一下备用。

然后回到Cherry Studio的主界面,我们来添加一下,直接粘贴过来,然后点添加模型就OK了。

设置好了之后,我们返回到主界面

5.创建&上传知识库

如果我们想要去创建知识库,先点击左侧

然后添加一个知识库,随便输入一个名称。

嵌入模型选择刚才配置进来的Beg M3,点击确定。

接下来就会来到我们上传文件的一个配置页面了

可以看到,这个地方支持PDF,dock,pptx,xlsx,txt格式等。

目录:就相当于你可以把整个文件夹导入进来``网址:在线去解析网址``网站:可以把地图添加进来``笔记:可以直接把一些文本复制过来,它也可以解析的

比如说我在这去检索一下DeepSeek R1,搜索一下。它这就会检索出每个文件里面提及的所有关于DeepSeek R1的一个关键词。并且右上角还会有占比的一个得分。

检索非常快速!

6.知识库检索

那我们这个地方,新开一个对话,直接向知识库进行提问,主义下面需要选择我们刚才新建的一个知识库 test1

现在我在这里提个问题,大家可以看到,它这直接引用了我这个文件里面的这个内容,给到了我非常准确的回答

信息类 结构类 控制类

很准确!完全能对应上☑️

它的检索不仅快,而且整个交互界面也是非常友好的。你还可以更加高阶地基于这个知识库去提问,举个🌰:

我想要编写一套帮助我写爆款短视频文案的一个提示词,然后想要让它基于这个知识库里面的这些技巧来帮我优化我的这个提问。

那么我把这样的一个问题给到它,我们来看一下,它怎么来回答?

基于知识库当中的这个策略为我构思一下爆款短视频文案提示词编写的思路。

大家可以看到,它给了我非常完整的回答:

吸引开头设计,紧凑剧情设计,情绪共鸣还包括互动性设计等等

那么所有的内容的回复,都是来源于我们知识库的文件。

有吸睛的开头,情绪共鸣,互动性,紧凑,节奏紧凑的剧情设计等等

所以毫无疑问,它给出的答案是非常准确的!

那么这个地方,要给大家提个醒:

在上传这个知识库的时候。如果说你上传的是一些手写的一些文件,带有非常多复杂的表格,或者是一些公式的,你上传到这可能它解写出来的这个效果就会特别差。

所以大家需要用到另外一个工具去帮助你们去做一个前置的解析工作。 那这个工具我放在这,大家可以自行下来去使用

Doc2X:(https://doc2x.noedgeai.com/)

7.创建智能体

那么Cherry Studio,它还有另外一个用法:智能助手

它可以选择到已有的一些智能体,当然你也可以自己去新建。

比如我这个地方,创作一个文案大纲助手

进来之后,我们需要去配置一下,点击右键的编辑助手

在这个地方,你可以去设置我们提示词

我们可以结合DeepSeek官网的这个API文档,有一个叫提示词库。这里提供了非常多的一些提示词模板:文案大纲生成,诗歌创作,结构化输出等等

直接复制到我们的智能体的提示词位置,然后点关闭

然后这个地方选择到模型,用我们刚刚所配置的R1。

这个地方的模型温度越高,它输出的内容也更具有创意性。反之亦然,然后其他的都默认,点击关闭。

这个地方还可以把它直接保存到我们的智能体中心

也就是当你去添加助手的时候,它就直接内嵌在我们的这个智能体库里边了。

ok,我们去对话一下:

我让它去生成DeepSeek发展史这篇大纲

那这儿大家可以看到基本上输出的这个内容都是按照提示词里边的结构来写的。

8.其他功能

总体来讲Cherry Studio,它的这个功能是非常的多元化。除了我们刚刚所讲的知识库之外,这地方还可以上传我们的图片和文档

另一方还有Flux生图功能

同时它的单个对话窗口还可以去@不同的模型

不同模型生成的答案就有一个非常直观的对比

这个地方有一个输出的一个排版,我们可以通过两列对比的方式来进行,左边就是通义千问输出的一个答案,右边就是R1的输出的一个内容。

如果你还想对比其他更多的模型的话,你可以回到我们最开始的设置里边,然后去添加其他的模型,进行对比就OK啦!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于 Ollama, DeepSeek R1 和 Dify 的技术文档和资源 #### Ollama 技术概述 Ollama 是一种用于开发智能系统的工具集,能够帮助开发者快速搭建具备自然语言处理能力的应用程序。该平台提供了丰富的API接口和服务支持,使得集成变得简单快捷[^1]。 #### DeepSeek R1 功能特性 DeepSeek R1 主要聚焦于提供高效的检索增强生成(Retrieval-Augmented Generation,RAG)功能。借助这一框架,用户能够在大规模语料库上执行精准查询并获取高质量的回答摘要。它不仅提高了信息提取的速度,还增强了结果的相关性和准确性。 #### Dify 平台介绍 Dify 则是一个专注于简化机器学习模型部署流程的服务平台。其特色在于自动化程度高、配置灵活以及维护成本低等方面表现出色。对于希望将自己的算法轻松上线的企业和个人来说是个不错的选择。 ```python import requests def get_ollama_docs(): url = "https://docs.ollama.com" response = requests.get(url) if response.status_code == 200: return f"访问 {url} 获取更多关于 Ollama 的官方文档" print(get_ollama_docs()) ``` 为了更深入地了解这三个项目的技术细节及其应用场景,建议查阅各自官方网站上的最新资料: - 对于 **Ollama** ,可前往 [官网](https://www.ollama.com/) 或者直接查看在线手册来获得最全面的帮助; - 针对 **DeepSeek R1**, 推荐参阅产品页面下的开发者中心部分,那里会有详细的安装向导与编程指南; - 而有关 **Dify** , 访问对应的GitHub仓库或是加入社区讨论组都是不错的途径之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值