手把手教你喂养 DeepSeek 本地模型

1.基本概念科普

这里先给AI小白简单科普一下基本概念,便于更好地理解本文中的动手操作。

为什么我这里叫“喂养”DeepSeek 本地模型,是因为大模型再强大也有它天然的局限性,比如训练数据不可能包含你的私域数据,而打造自己的本地私域知识库,就需要检索这些数据,具体采用的是RAG(检索增强生成)方法。

RAG,英文全称是Retrieval-Augmented Generation。简单来讲,采用RAG就需要把你的私域数据向量化,然后存储到向量数据库中,支持向量检索配合LLM大模型一起提供更专业的回复。

2.下载 AnythingLLM 软件

官方网站:

  • https://anythingllm.com/desktop

下载符合你系统平台的软件,我这里是Apple Intel:

下载好的AnythingLLMDesktop.dmg,dmg文件约300M多点,双击安装并拖至应用程序中:

拖动时可以看到AnythingLLM安装程序有1G大小:

然后打开AnythingLLM,欢迎界面如下:

点击Get Started配置首选LLM,这里我们选择上一篇文章已经教大家配置好的Ollama:

这里注意,需要确保你的Ollama正常运行,否则会报错找不到provider endpoint,如下图:

此时就需要检查你的ollama以及可用的本地模型:

修复好之后就可以看到AnythingLLM已经可以正确识别到本地部署的模型:

之后可以看到LLM模型选择了Ollama,Embedding默认是AnythingLLM的Embedder,Vector Database默认是LanceDB:

为了不给新手加难度,Embedding和Vector Database我这里都没有进行修改,直接先进入到下一步,是一个survey,笔者是个i人,实在没啥可说的,这里直接跳过了:

下一步选择工作区名称,你可以随便起名字,我这里就用自己的英文名演示了:

然后就终于进入了主界面:

呼呼,迫不及待的开始测试。
我这里直接设计了一个大模型不可能知道的问题,就是拿我的中文名字去做测试,直接问他“赵靖宇是谁?”

果然,它不知道!

马上开始上传一段TXT文本QA-Test.TXT,其实就是简单包含了我之前在讲公开课时的一段个人介绍,全文也没几句话。开始期待它的表现,上传方式如下,可以看到上传后文件就会自动Embedded!

可是…… 这里不太顺利,它居然还是不知道!呜呜呜,我都把小抄给你了你还说不知道,笔者已哭晕……

此时只能转而troubleshooting,检索发现不少人都有遇到类似问题,有人甚至直接发结论说本地大模型的模式下,AnythingLLM根本无法识别上传的个人文件,甚至力劝大家别折腾了。。

3.配置 nomic-embed-text 模型

笔者属于不撞南墙不回头的类型,想深挖下问题到底出在哪里?开始逐一检查可能的配置:
1)聊天设置模型选择肯定是没问题,本地大模型 DeepSeek:

2)向量数据库默认的,向量数量为1:

3)代理配置依然选择了本地大模型 DeepSeek:

笔者初步判断:

  • 1)本地大模型肯定没问题,因为上篇使用Chatbox调用都OK,AnythingLLM对应配置也再次确认了,均正确。

  • 2)向量数据库虽然我有更好的选择,笔者就是从事数据库行业,但这里显然还没到那个阶段,默认的即便再拉跨也不至于一个这么简单的文本向量化都搞不定。

  • 3)那就剩下 Embedding 用的模型,虽然开始也没怀疑过,但是这样排除下来就这个可能性最大了。要不,换一个试试?

目前 Embedding 采用的是默认的 AnythingLLM Embedder:

简单research了下,选了另一个Ollama下的nomic-embed-textEmbedding 模型,官方网站:

  • https://ollama.com/library/nomic-embed-text

我们可以在terminal下使用ollama直接拉取ollama pull nomic-embed-text

然后再回到Embedder首选项,在嵌入引擎提供商,选择Ollama,然后在下面的Ollama Embedding Model选择刚刚下载的最新nomic-embed-text:8192,如下图:

选择好之后点击蓝色的按钮保存更改,会弹出一个比较醒目的Warning,如下图:

主要是警告你要做的这个更改Embedding模型的操作会重置先前所有embedded的文档,且不可逆转。我这之前的根本没效果,重置就重置,赶紧点击Confirm,迫不及待想看下这个新的Embedder是否有用?

4.演示如何正确喂养个人数据

使用跟之前同样的操作方法,同样的问题赵靖宇是谁?,喂养文本QA-Test.TXT,终于起作用了!

于是兴奋地继续追问:他有几年的工作经验?,又不知道了,当然这个正常,因为我提供的信息里就没有明确提到,可以继续上传其他个人数据,比如说来份PDF格式的个人简历:

然后继续问些更细节的问题:你知道他的博客地址是什么吗?赵靖宇有公众号吗?

效果还是比较给力的,均给出了正确答案。明确说出我的公众号名称赵靖宇,以及Blog的url地址:https://www.cnblogs.com/jyzhao/,尤其是网址能准确给出还是比较惊喜的。

5.喂养前后效果对比和缺陷

上面已经看到了喂养后的效果显著,但这是否就高枕无忧了呢?

其实不是的,比如我继续测试时发现,当让它帮我总结下简历信息,就看到了较明显的缺陷:

这里有两处明显的错误:而且有一个错误,还是之前单独问它时,回答正确的,具体如下图:

其实这个回复中大部分信息都还OK,可瑕疵也是极为明显的,比如它居然说我是人工智能聊天机器人,然后把之前曾正确回答出的博客网址又给答错了。
这些讹误和不稳定性,原因可能是受限于我本地部署的模型太小,本身能力不足,也可能是Embedding向量化的工作做的还不够好,但总体来说,对于我这台个人电脑能达到这样的效果,已经很是知足了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值