近期深圳大学附属华南医院、昆山市第一人民医院、上海市第四人民医院、湖南省人民医院等超50+公立医院宣布完成deepseek本地化部署,很少看到医院们“如此主动拥抱AI”的盛况。
但本地化部署远不止“买几台服务器”这么简单:硬件投入只是冰山一角,要部署怎样规模的大模型?要做怎样的配套准备?落地后应用在哪?是否只有本地部署一条路?
01 账要算得清:本地化部署的成本
DeepSeek-R1系列模型覆盖从1.5B到671B的参数跨度,形成完整的技术栈:
-
微型模型(1.5B-7B):适用于本地测试,可以处理基础NLP任务,比如文本摘要、翻译、多轮对话等
-
标准模型(8B-14B):平衡性能与成本的主力模型,可用于进行长文本理解和生成
-
企业级模型(32B-70B):高精度专业领域,可进行多模态任务处理、大规模计算
-
超级大模型(671B):满血版,可用于进行复杂决策分析,处理高精度高性能需求
TIPS:
-
显存计算公式:模型参数(B)× 2.5 ≈ 最低显存需求(GB)
例:14B模型需14×2.5=35GB显存/卡
-
电力成本:每张H100年耗电约3000度(电费约2400元/卡/年)
-
折旧周期:GPU设备按5年折旧,存储设备按8年折旧
-
宽带成本:
低并发场景(<100人):R1-32B模型在10Gbps带宽下,响应延迟可控制在200ms以内,年带宽成本约12万元。
高并发场景(>1000人):R1满血版需40Gbps专用通道,延迟需压缩至50ms以下,年带宽成本飙升至180万元。
-
隐藏雷区:
70B以上模型需配套液冷系统(增加80-120万投入)
671B部署要求独立机房(面积≥40㎡)
02 比花钱更重要:本地化部署的配套准备
1、数据基础
AI的训练、微调、应用都离不开高质量的数据。如何进行数据汇集、数据脱敏、数据标准化、数据的标注、院内统一数据湖的建立都是十分重要的
2、人才储备
技术人才储备方面,需要掌握TensorFlow/PyTorch框架及模型微调的算法工程师以及熟悉Kubernetes集群管理的运维工程师
3、制度保障
要制定针对AI生成结果的周期性改进制度、医疗AI系统误操作应急预案、算力等资源预警策略等
03 用在哪很重要:找寻高价值的应用场景
结合近50+医院的对外宣传以及行业理解,个人认为以下落地场景可以参考:
1、病历质控
二级医院以上100%需要执行病历质控,人工审查及其耗时。而病历书写标准有明确的规则参考,且医院有各科室有沉淀病历范本可以用作专项训练,大模型有卓越的思考能力,中文表达和理解上也尤为出众。有资料显示,采用7B模型的试点医院即可在病历质控环节实现缺陷检出率提升68.5%
2、科研数据挖掘
三甲医院年均产生5PB科研数据,利用率不足15%。有资料显示,32B的模型处理GWAS分析可提升效率40倍,且此场景可以和院校、药企紧密合作,提升医院影响力
3、AI赋能智慧管理辅助数据分析
现如今医院CDR、ODR建设均有所成就,但在海量数据以及高门槛的数据分析背景下,很多本应从数据中挖掘出的问题没有被发现,利用AI进行海量数据分析和洞察能力也许是数据驱动医院发展的最后一块拼图
4、智能导诊
智能导诊是最为普及的患者侧医疗ai解决方案,早在大模型问世之前基于NLP和知识图谱的导诊方案就已经在多家医院落地。大模型凭借优秀的上下文对话能力,可以大幅提升患者的就医满意度、缩短门诊排队时间,也可作为患者的AI就医助手的第一个触点为用户提供更多扩展服务。
04 冷静思考,本地部署的优劣
本地化部署的三大明显优势:
1、数据不出院,数据安全有保障
医疗数据涉及患者隐私,本地化部署确保数据存储于医院内部服务器,避免云端传输或第三方存储的泄露风险
2、稳定性强,随时可用
本地化部署模式可避免了因云服务商故障或资源匮乏等问题导致延迟或无法使用。保证AI应用的流畅性与运行效率,这点无论在C端患者服务还是在B端诊疗和管理上都十分重要
3、服务更灵活,更有想象空间
医疗系统专业且庞杂,每家医院都有自己的知识沉淀和管理规范,有了本地化部署的大模型,结合自身诉求和真实数据,相比云端通用服务更灵活更有自主权
同样本地部署也会面临几点风险:
如果作为研究学习,本地部署下deepseek小规模尝试无可厚非,若要投入大量人力物力部署“满血版”还应慎重考虑几点风险:
1、技术风险转移到医院自身
AI作为新兴技术,门槛高,变化快。缺乏专业经验的人进行运维,后续发生技术问题若无法进行技术处理,系统将陷入停滞状态
2、成本往往会被低估
即使deepseek轻量化部署有优势,但是配套的硬件、网络、电力、人员、数据质量都会左右AI应用效果,要想高质量应用,势必需要大量投入
3、技术变革快、政策变革快
未来部署成本会不会进一步降低、GPU等硬件性能是否会指数级提升、是否会有新的大模型产生、地方是否会有算力中心供地方医院应用,技术和政策环境的变化都将影响未来AI医院的建设思路。
本地化部署并非“自古华山一条路”:
一直以来医院系统是否要本地化部署都没有绝对的答案。deepseek的部署也一样,一方面可以通过企业合作、高校合作、政府合作找到算力等成本的“新出口”;另一方面可以部署小模型,针对特定场景(如涉及敏感数据的),用混合云方式进行落地部署。
总结
deepseek的出现,让我们看到医院正在积极拥抱AI,2025年此时的AI医院的建设暂无“通用答案”。一些医院或许能靠规模、影响力、院校优势等摊薄成本,而中小医院更需谨慎权衡,无需盲从。
紧跟国家政策、了解技术变革,很高兴和您共同见证时代的变革~
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。