Manus 是一款通用型 AI 助手,能将想法转化为行动:不止于思考,更注重成果。Manus 擅长处理工作与生活中的各类任务,在你安心休息的同时,一切都能妥善完成。
Manus 的名字源自拉丁语中“手”的含义,寓意其具备将思维转化为行动的强大能力。不同于常规的 AI 助手,Manus 不仅限于提供咨询或答复,它还能直接完成任务的交付。
作为一款“全能 AI 代理”,Manus 能够独立完成从简单查询到复杂项目的各种任务,无需用户持续介入。用户只需给出简单的指令,无需具备 AI 专业知识,便能获得优质的结果。
“一触即解决所有问题”的设计理念,让 Manus 在传统 AI 操作流程中脱颖而出,极大地降低了普通用户的操作门槛。
**—1**_—_
Manus 核心架构剖析
Manus 的架构设计充分展现了多智能体系统(Multi-Agent System)的标志性特点,其核心由以下三个主要模块组成:
第一、规划模块(Planning)
作为 Manus 的"智慧核心",规划模块负责解析用户指令,将复杂任务拆分为可操作的步骤,并策划实施计划。该模块使得 Manus 能够应对抽象的任务描述,并将其转化为具体的行动指令。
该决策中心的主要功能包括:
-
任务的理解与分析
-
任务拆分与优先级排序
-
执行计划的制定
-
资源分配与工具选择
-
语义理解与意图识别(自然语言理解,NLU)
-
将复杂任务转化为有向无环图(DAG)结构
-
异常处理与流程优化
第二、记忆模块(Memory)
记忆模块赋予了 Manus 存储和利用历史数据的能力,增强了任务执行的连续性和定制化水平。该模块负责管理以下三种关键信息:
-
用户偏好:记录用户的习惯和偏好,以实现更个性化的交互
-
历史交互:存储过去的对话和任务执行历史,确保上下文的连贯性
-
中间结果:保留任务执行过程中的临时数据,支持复杂任务的逐步完成
以下是构建长期记忆体系的示例代码:
class MemorySystem:` `def __init__(self):` `self.user_profile = UserVector() # 用户偏好向量` `self.history_db = ChromaDB() # 交互历史数据库` `self.cache = LRUCache() # 短期记忆缓存
第三、工具使用模块(Tool Use)
工具使用模块充当 Manus 的"执行臂",负责实施各种操作。该模块能够整合并运用多种工具来完成使命,包括但不限于:
-
网络搜索与信息检索
-
数据分析与处理
-
编写并执行代码
-
文档的生成
-
数据的可视化
这种集成多种工具的能力确保了 Manus 能够应对各式复杂任务,从信息搜集到内容创作,再到数据分析处理。
第四、技术架构依赖
Manus 强大能力得益于多层次的模型协作:
-
轻量级模型:负责意图识别,提供快速响应
-
Deepseek-R1:专注于任务规划,把控全局策略
-
Claude-3.7-sonnet:处理复杂的多模态任务,提供深度理解能力
**—2**_—_
Manus 运转逻辑与工作流程
Manus 采用多智能体架构,在独立的虚拟环境中运作。其工作流程可总结如下:
完整执行流程如下所示:
第一、任务接收
用户提交的任务请求,无论是简单的查询还是复杂的项目需求,Manus 都会接收并开始处理。
第二、任务理解
Manus 解析用户输入,把握任务的核心和目标。在此阶段,记忆模块提供用户偏好和交互历史,以更精确地解读用户意图。
-
利用先进的自然语言处理技术进行意图识别和关键词提取。
-
当需求不明确时,通过对话引导用户明确目标。
-
支持文本、图片、文档等多种输入方式,增强交互体验。
第三、任务分解
规划模块自动将复杂任务拆分为多个可执行的子任务,并建立任务间的依赖关系和执行顺序。
第四、任务初始化与环境准备
系统为任务执行创建独立的执行环境,确保隔离性和安全性。
第五、执行计划制定
为每个子任务制定执行计划,包括所需的工具和资源。历史交互记录用于优化执行计划。
第六、自主执行
工具使用模块在虚拟环境中独立执行子任务,包括信息搜索、数据检索、代码编写、文档生成和数据分析可视化等。中间结果由记忆模块保存,供后续使用。
系统协同:多个专业化的智能体协作,各自负责不同的任务。
每个智能体的执行结果都保存在任务目录中,确保可追溯性。
class SearchAgent:
def execute(self, task): # 调用搜索 API results = search_api.query(task.keywords) # 模拟浏览器行为 browser = HeadlessBrowser() for result in results: content = browser.visit(result.url) if self.validate_content(content): self.save_result(content)
-
Search Agent 负责网络信息搜索
-
Code Agent 代码智能体处理代码生成和执行
-
Data Analysis Agent 进行数据分析
第七、动态质量检测
质量检查函数确保结果可靠性:
def quality_check(result):` `if result.confidence < 0.7:` `trigger_self_correction()` `return generate_validation_report()
第八、结果整合
将子任务的结果合并为最终输出,确保内容的连贯性和完整性。
-
智能合并所有智能体的执行结果,消除冗余和矛盾。
-
生成易于用户理解的多模态输出,确保内容的可理解性和实用性。
第九、结果交付
向用户提供完整的任务成果,可能包括报告、分析、代码、图表等格式。
第十、用户反馈与学习
用户对结果进行反馈,记忆模块记录这些反馈,用于提升未来任务的执行效果。通过模型微调,系统性能得到持续增强。
Multi-Agent 系统代表了 AI 发展的前沿方向,Manus 等产品的出现正是这一趋势的生动体现。虽然这类系统仍面临计算成本和任务准确性的挑战,但其协同智能的潜力不可估量。
未来,随着模型效率的优化和任务执行可靠性的提升,我们将看到更多"Leave it to Agent"的应用场景,真正实现 AI 从思考到行动的无缝衔接。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。