清华团队的“网络药理学”思路就是高级!“机器学习(虚拟筛选)+分子对接+分子动力学模拟”搞定生信顶刊BIB,这波组合拳真的妙!

今天的这篇文章,生信港看完后真是感慨万千啊,不愧是顶尖学府啊,网药分析不但加上了其高配搭档——分子对接和分子动力学模拟,增强了文章的创新性及档次;还蹭上了AI的热度,通过结合机器学习和深度学习的虚拟筛选方法,成功从现有药物中筛选出具有抗结核潜力的化合物,实现了老药新用。所以,网药即使很卷,但这种基于机器学习的“虚拟筛选”并不常见,朋友们不妨试试这个组合拳!感兴趣的话可以来找生信港帮你设计思路、定制生信分析哦!

影响因子:IF=6.8

研究背景

聚焦于结核病(TB)的全球健康挑战,尤其是耐药结核分枝杆菌(Mtb)的出现,使得现有抗结核药物的疗效受限,增加了结核病控制的难度。尽管近年来有新药获批用于耐药结核病的治疗,但其高成本和有限的可及性限制了广泛应用,且临床耐药现象已逐渐出现。因此,迫切需要通过药物再利用或开发新药来加速抗结核药物的发现,以应对这一全球性健康威胁。

研究思路

从ChEMBL数据库收集公开的抗结核(anti-Mtb)生物活性数据,构建用于虚拟筛选的训练数据集。使用扩展连接性指纹(ECFP4)和MACCS指纹以及图神经网络(GNNs)提取所需的分子图特征。结合多种机器学习模型(XGBoost、GCN、GAT、MPNN和AttentiveFP)开发虚拟筛选模型,并通过内部验证和外部验证评估模型的预测性能。利用训练好的模型对DrugBank数据库中的11,576种化合物进行虚拟筛选,以识别具有新抗结核潜力的现有药物。

对筛选出的15种候选化合物进行体外抗结核活性测试,测定其对结核分枝杆菌标准菌株H37Rv和耐药菌株的最小抑制浓度(MIC);通过分子对接预测了筛选出的活性化合物与结核分枝杆菌DNA gyrase的结合模式,并进一步通过分子动力学模拟和表面等离子共振(SPR)实验进行了验证。

研究方法

研究结果

1. 基于ChEMBL数据集关联分析化合物性质与活性

2. 多种机器学习模型预测性能评估表现良好

3. 药物抗菌活性实验成果结果表明aldoxorubicin和quarfloxin对H37Rv抑制呈浓度依赖性

  1. 分子对接以及分子动力学模拟进一步验证aldoxorubicin和quarfloxin的结合特性

文章总结

这篇文章再次展示了机器学习的妙用在网药如此卷的情况下,联合上机器学习做个虚拟药物筛选,不仅避免了常规药物筛选费时费力的情况,还丰富文章的内容,提高了文章的创新性,这不就直击审稿人心巴,拿下生信顶刊BIB了么?此分析套路对新手友好,而且经常在顶刊出没,还没上车的你真的别再犹豫了想复现这篇文章,但是担心技术不过关的朋友,速速看过来吧,这点小事对于生信港来说简直就是小菜一碟!我这边随时待命,万事俱备,就差你啦!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值