Energy 基于贝叶斯算法优化的CNN-LSTM神经网络的水轮机故障诊断

在这里插入图片描述

PART.01 摘要

水轮机是水电站的核心设备,对其故障进行诊断和识别至关重要。提出了一种基于贝叶斯优化(BO)的水轮机故障诊断模型(BO-CNN.LST-M),该模型结合了卷积神经网络(CNN)和长短期记忆(LSTM)方法。CNN自适应地提取和缩小故障特征,并将其输入LST’M模型进行特征学习和训练。采用BO算法来解决模型超参数选择的挑战。构建了一个水轮机故障实验台来训练和验证该模型。实验结果表明,所提出的BO-CNN-LSTM模型在水轮机故障诊断中具有优越的性能,分别达到92.7%、98.4%和90.4%的准确率,超过了CNN、LSTM和CNN-LSTM模型。与未优化的NN LS’T模型相比,BO.CNN-LST’M模型的准确率分别提高了5.5%、6.3%和9.0%。引入BO算法从声振动信号的角度优化CNN-LST’M,这可以对现有的水轮机故障诊断进行有益的补充。

水轮机、故障诊断、CNN-LSTM、贝叶斯优化、深度学习

PART.02 问题背景

能源是人类生产生活的动力来源,也是全球发展的基础[1]。水电作为清洁能源发电已有百年历史。它以其可再生性、清洁性、低成本和强大的调节能力在世界能源框架中占有重要地位[2,3]。目前,水力发电约占世界能源供应的20%,预计到2035年,全球年发电量将达到6.1亿千瓦时,水电装机容量为1.75亿千瓦时[4]。水轮发电机是水能建设的重要组成部分,水轮机是机组的核心设备,其可靠安全运行是基础[5]。然而,与其他形式的发电相比,水力涡轮机在复杂恶劣的环境中运行,经常发生故障,导致巨大的维护成本和经济损失,造成无法预测的后果甚至灾难性事故[6,7]。因此,诊断和识别水轮机故障至关重要。

旋转机械故障研究起源于20世纪60年代[4]。目前,水轮机故障的主要诊断方法包括以下三类:基于分析模型的诊断方法、基于经验知识的诊断方法和基于数据驱动的诊断方法。

Willsky于1976年引入了基于模型的故障诊断的概念[8]。基于模型的故障诊断方法基于控制理论,该理论将水轮机定义为具有输入和输出关系的动态系统。基于系统的投入产出关系建立分析或数学表达式模型[9]。经典卡尔曼滤波器是使用定量数学模型根据估计值和测量值之间的残差来检测和分离水轮机的故障[10]。近年来,基于模型的故障诊断方法已扩展到结构损伤检测、轴裂纹检测、感应电机和航空航天[11-13]。然而,水轮机是一个复杂的非线性时变系统[14],其中包含各种瞬态过程[15],很难在稳态水平上获得更精确的数学模型来分析单个模型,这也限制了该方法在水轮机故障识别中的应用。当故障诊断方法涉及该研究领域的经验知识时,它被称为基于经验知识的故障诊断方法[16]。这种方法的特点是不需要研究对象的精确模型,使用语义和框架表达经验知识,并对故障诊断进行推理,如故障树分析(FTA)[17]和专家系统[18]。基于经验知识的诊断方法具有更好的准确性和可靠性、高效率和简单的推理。然而,它依赖于专家经验,在识别复杂故障时存在组合爆炸的问题[19]。它主要应用于水轮机的离线故障分析[20]。与前两种故障识别方法相比,数据驱动诊断方法适用于各种运行条件和水轮机复杂结构下的故障诊断,可以解决经验知识无法分析建模或解决的复杂问题,在故障诊断应用中具有精度高、鲁棒性强、泛化能力强等优点。目前,这些方法主要包括神经网络[2l]、支持向量机(SVM)[22]、统计分析[23]和模糊诊断[24]。

深度学习理论在数据分析方面具有独特的优势,具有强大的建模优势和数据处理能力[25,26]行业领域越来越多地使用深度学习技术来处理大量信息数据,故障诊断和识别也不例外[27]。在深度学习方法中,CNN因其强大的特征自学习能力而被广泛应用于旋转机械的故障诊断[28,29]。CNN最关键的特征是卷积的权重值共享结构,这降低了神经网络模型的复杂性,同时大大减少了神经网络的参数数量,防止了过拟合[30]。然而,CNN只能训练和识别数据的静态特征。这种结构忽略了时间层面上序列数据之间的长期依赖性,使得CNN在处理长序列时受到限制[3l]。循环神经网络(RNN)可以在一定程度上保留时间序列数据中距离更远的历史信息[32]。它适用于解决时间序列数据集的分类和回归问题[33]。在实际应用中,远离当前时刻的数据不能作为当前时刻神经元输入输出映射的参考。这可能会导致RNNs中的梯度消失和梯度爆炸问题[34]。Hochreiter等人[35]提出的长短期记忆(LSTM)是一种改进的RNN,非常适合处理时间序列数据。它可以存储比RNN更长的记忆。LSTM可以学习长期依赖性作为其结构的固有部分[36]。此外,它解决了RNN中梯度展开和梯度消失的关键问题,提供了出色的结果和性能[37]。

一般来说,更多的节点和更深的网络层将导致更好的学习和拟合,但会显著增加超参数的数量。超参数包含每层的节点数、迭代次数和学习率,这些是在模型训练开始之前设置的一组参数[38]。超参数的不同组合会影响模型的平滑度和准确性,并且无法预测它们之间的模式[39]。评估每个超参数组合需要许多迭代计算,这消耗了大量时间,但很好。有必要对超参数进行调优。BO算法是一种高效的全局优化算法,其最终目标是找到优化问题的全局最优解[40]。BO算法可以追溯到20世纪50年代提出的贝叶斯定理,该定理当时没有应用于优化问题。BO算法在20世纪70年代开始兴起[41,42]。随着深度学习和优化的快速发展,BO算法逐渐成为研究热点[43]。BO算法被广泛用于解决复杂的高维优化问题,特别是在机器学习模型的超参数优化、神经网络结构搜索和自动机器学习中[44,45]。BO算法在没有扩展采样点的情况下,以最小的评估值找到目标函数的最优解。它非常适合解决具有未知目标函数表达式和成本估值的复杂优化问题[46]。此外,它擅长解决深度学习模型中的超参数调优挑战[47]。综上所述,本文提出了一种基于BO算法的CNN-LSTM水轮机故障诊断方法。将CNN和LSTM两种神经网络模型融合,构建CNN-LSTM故障诊断模型。由于原始CNN-LSTM模型的超参数数量较大,这将降低其平滑度和准确性,因为BO算法可以更好地解决深度学习模型的超参整定问题,提高模型求解的效率和准确性。因此,在CNN-LSTM故障诊断模型中引入了BO算法来优化超参数的选择。最终结果优于传统的神经网络模型。本文的主要创新可分为以下几类:

水轮机故障深度学习模型设计引入了BO算法;

用于水轮机故障诊断的CNN-LSTM模型构建,

引入BO算法进行超参数优化;

通过故障实验台验证方法的有效性;通过声信号进行水轮机故障研究。

本文的研究流程图如图1所示。

图片

PART.03 方法概述

CNN在特征学习方面具有影响力,并且具有高度的容错性和鲁棒性。CNN是一个由输入层、卷积层(CONV)、激活函数层、池化层和全连通层(FC)组成的多层神经网络,其典型架构如图2所示。

图片

LSTM是一种改进的RNN。它学习长期依赖信息,以缓解RNN在训练过程中的梯度消失和爆炸问题。LSTM是处理时间序列数据的理想选择[49]RNN只能保持一个隐藏状态,而LSTM有更多的参数来决定存储什么信息和丢弃什么信息,基于LSTM的网络是时间序列分类和预测的理想选择。LSTM的整体结构如图3所示。它由五个构建块组成:单元状态、隐藏状态、输入门、遗忘门和输出门。其主要特征包括三种门控结构:输入门、输出门和遗忘门。

图片

在CNN-LSTM故障诊断模型中,CNN负责提取输入数据的空间特征并降低数据维度。同时,LSTM负责挖掘隐藏的时间规则特征,其长期记忆也更适合对数据进行分类。CNN-LSTM故障诊断模型如图4所示。该模型主要由声振动信号输入层、CNN卷积层、池化层、LSTM层分类层和输出层组成。初步诊断过程如下:

1) 收集了水轮机故障的声振动信号。将信号组织并分割成固定片段,构建adata样本集;

2) 将样本集输入CNN卷积层,并使用卷积核自适应地提取故障特征;

3) 提取的特征在池层进行最大池化操作,降低数据维数,保留原始特征信息;

4) 降维特征数据作为LSTM层的输入,LSTM层用于训练神经网络并自动学习故障特征;

图片

本文引入BO算法来解决CNN-LSTM模型由于节点和网络层数的增加而具有过多超参数的问题。BO-CNN-LSTM水轮机故障诊断模型的框架如图5所示。首先,收集水轮机不同运行状态下的声振动信号。收集的数据被组织和分割,以产生一个样本集。将样本集中的数据分为训练集和测试集,然后建立CNN-LSTM故障诊断模型。建立该模型的超参数,并设置要优化的超参数的组合区间。对超参数执行BO算法。计算当前超参数下模型评估函数的值。完成后返回BO算法,根据概率模型获取函数选择下一组超参数进行新一轮训练,直到达到迭代次数。

图片

图6显示了优化搜索过程中目标值的变化。BO算法基于先前的观测值在超参数空间中评估新的候选点。对于CNN-LSTM模型的超参数搜索,经过30次迭代后,目标值在第五次迭代时完成收敛。估计的目标值需要八次迭代才能完成收敛。虽然在搜索过程中估计的目标值不会陷入局部最优性,但它有更多的迭代,收敛性较差。BO算法通过在第五次迭代中观察目标值来找到最优解。这组最优解包含超参数的最佳组合,具体来说,初始学习率=0.0019,正则化因子=0.0047,LSTM1=63的单位数。

图片

PART.04 实验

设计的故障实验台如图7所示。故障实验台由四个部分组成:储水系统、供水系统、实验段和回水系统。储水系统包括水箱,供水系统包括压力泵和管道,实验段包括水力发电机。回水系统包括潜水泵和管道。实验台测量含沙水流过水轮发电机产生的声音信号,在实验台运行前,水箱和水槽都装满水,然后同时启动压力泵和潜水泵。压力泵将水从水箱中抽出,沿管道流向水力发电机,冲击转子叶片。通过水力发电机的水流返回水箱,然后通过潜水泵将水抽回水箱,以完成循环。实验过程中的沉淀物被添加到水箱中,螺栓从压力泵和水力发电机之间的管道位置添加。已完成的故障实验台如图8所示。

图片

图片

采集了水轮机正常工况、不同含沙量磨损故障工况和冲击工况下的声振动信号。采集信号的波形如图9所示。
图片

基于用于诊断和识别含沙量为0.73kg/m³的正常工况A、磨损故障B和冲击故障D的BO-CNN-LSTM模型,选择CNN、LSTM和CNN-LSTM三种模型作为对照,四种不同模型的训练曲线如图10所示。

图10(a)展示了CNNLSTM、CNN-LSTM和BO-CNN-LSTM四个模型的精度曲线。总体而言,经过50次迭代计算,所有四个模型在水轮机故障诊断中都能保持65%以上的精度。具体来说,LSTM模型的准确率最低,为69.4%,CNN模型的准确度高于LSTM模型,达到79.6%。CNN-LSTM模型融合了CNN和LSTM的优点,将准确率进一步提高到86.4%。这表明LST的融合成功地克服了CNN模型在处理长序列问题时的局限性,提高了模型的稳定性和准确性。BO算法的优化CNN-LSTM模型的准确率为91.8%,比CNN-LSTM模型提高了5.4%。此外,BO CNN LSTM模型的精度曲线波动小于其他三个模型,并在较少的迭代次数内达到稳定状态。

图10(b)显示了四种模型NN、LSTM、CNN-LSTM和BO-CNN-LSTM的函数损失率曲线。经过50轮迭代,这四个模型的函数损失率始终保持在1以下。总体而言,BO-CNN-LSTM模型的函数丢失率为0.21,低于其他三个模型,其收敛性也优于其他模型。BO-CNN-LSTM模型有效地融合了CNN和LSTM的特征,同时结合BO算法搜索最佳超参数组合,提高了模型的准确性并增强了其稳定性。

图片

图11显示了四种模型训练的混淆矩阵。从整体上看,由于撞击产生的信号幅度远大于其他两个信号,故障特征更加突出,这四种模型在诊断撞击故障方面非常有效,准确率达到100%。其中,四种模型在诊断含沙量为0.73kg/m³的工况方面效果较差。BO-CNN LSTM模型在诊断结果和实际结果之间具有最高的一致性。

图片

图片

对训练好的模型进行了测试,结果如图12所示。四个模型的评估得分表明,BO CNN LSTM模型的评估指标优于其他三个模型,准确率、精密度、召回率和Flscore分别为97.7%、90.4%、97.4%和93.7%。LSTM模型的评价指标最差。与其他三种方法相比,BO-CNN-LSTM模型可以更准确地捕获实际故障样本,并在考虑召回率和精确度的情况下实现最佳性能。该模型具有更好的稳定性和可靠性,可以对水轮机磨损故障信号进行更全面的诊断。

图片

图13直观地显示了CNN、LSTM、CNNLSTM和BO-CNN-LSTM模型在不同工作条件下的测试精度。总体而言,所有四个模型都对冲击故障条件D显示出良好的诊断准确性。具体而言。LSTM模型在条件A和B下表现不佳,CNN模型的准确率仅为65.3%。具体来说,LSTM模型在条件A和B下的表现较差,准确率仅为65.3%,而CNN模型的准确率为8l%,高于LSTM模型。然而,在诊断条件A和B时仍存在显著误差。CNN-LSTM模型的准确性高于LSTM模型,CNNLSTM模型的准确性也高于LSTM模式。组合CNN-LSTM模型的准确率高于CNNand-LSTM模型,为87.2%。应该指出的是,BO-CNN。LSTM模型在精度性能方面优于其他三个模型,为92.7%,比未优化的CNN-LSTM模型提高了5.5%。这一结果验证了所提出方法的可靠性和稳定性。

图片

图片

基于BO-CNN-LSTM模型,用于诊断和识别沉积物浓度为1.4kg/m的正常工作状态A、磨损故障C和冲击故障D,选择CNN、LSTM和CNN-LSTM三种模型作为对照。四种不同模型的训练曲线如图14所示。

图14(a)显示了CNN、LSTMM四种模型的精度曲线。CNN-LSTM和BO-CNN-LSTM,经过50次迭代,所有四个模型的准确率均超过70%。具体来说,LSTM模型表现最差,准确率为73.4%,曲线波动较大,稳定性较差。相比之下,CNN模型的准确率为85.1%,优于LSTM模型。CNN-LSTM模型结合了CNN和LSTM的优点,性能更好,准确率为90.7%。此外,通过BO算法优化的CNN-LST模型的准确率为97.5%。与未优化的CNN-LSTM模型相比,BO-CNN-LSTM模型的准确性提高了6.8%。此外,BO-CNN-LSTM模型的精度曲线相对稳定,波动较小,可以在少量迭代内达到稳态,使其性能比其他三种模型更稳定可靠。

图片

图14(b)显示了CNN、LSTM、CNN-LSTM和BO-CNN-LSTM四种模型的损耗率曲线。经过50次迭代,所有四个模型的损失率都小于0.8。具体来说,BO-CNN-LSTM模型的函数损失率为0.06,远低于其他三种模型,并且比其他模型具有更好的收敛性和稳定性。

图15显示了四个模型训练的混淆矩阵。所有四个模型对冲击故障状况都有良好的诊断结果,准确率为100%。相比之下,沉积物浓度为1.4kg/m’的磨损断层的诊断结果相对较差。具体来说,BO-CNN-LSTM模型在诊断结果和实际结果之间具有最高的一致性。

图片

图片

对训练好的模型进行了测试,结果如图16所示。在四个模型的评估得分识别结果中,BO CNN LSTM模型的评估指标优于其他三个模型,准确率、精密度、召回率和Flscore分别为98.4%、97.6%、100%和98.8%。LSTM模型的评价指标最差。与其他三种方法相比,BO-CNN-LSTM模型更能识别实际故障样本,在同时考虑召回和精确性时实现了最佳平衡,具有更好的稳定性和可靠性。

图片

图17直观地显示了CNN、LSTM、CNNLSTM和BO-CNN-LSTM模型在不同工作条件下的测试精度。总体而言,所有四个模型对冲击故障条件D都显示出良好的诊断准确性。具体来说,LSTM模型对条件A和C的诊断准确性较差,仅为76.5%,而CNN模型的准确率为83.6%,高于LSTM模型,但对条件A、C仍有显著误差。STM模型对情况A和C比LSTM模型更准确。CNN。LSTM模型的精度高于LSTM模型。组合CNN-LSTM模型的准确率高于CNNand-LSTM模型,为92.1%。值得注意的是,BO-CNNLSTM模型在准确率方面优于其他三个模型,为98.4%,比未优化的NN-LSTM模型提高了6.3%。这一结果验证了所提出方法的可靠性和稳定性。

图片

图片

基于BO-CNN-LSTM模型,用于诊断和识别正常工作状态A、泥沙浓度为0.74kg/m’的磨损故障B和泥沙浓度为1.4kg/m³的磨损故障C,选择CNN、LSTM和CNN-LSTM三种模型作为对照。四种不同模型的训练曲线如图18所示。

图18(a)显示了四个模型(CNN、LSTM、CNN-LSTM和BO-CNN-LSTM)的精度曲线。经过50次迭代,这四个模型的精度与之前的精度相比总体上较低。具体来说,LSTM模型的表现最差,准确率仅为63.8%,曲线波动更大,需要更稳定。CNN模型的准确率为76.8%,优于LSTM模型。CNN-LSTM模型结合了CNN和LSTM的优点,性能略好,准确率为82.3%。通过BO算法优化的CNN-LSTM模型的准确率为89.7%。与未优化的CNN-LSTM模型相比,BO-CNN-LSTM模型的准确性提高了7.4%。此外,BO-CNN-LSTM模型的精度曲线相对稳定,波动较小。它可以在少量迭代内达到稳定状态,使其性能比其他三种模型更稳定可靠。

图18(b)显示了CNN、LSTM、CNN-LSTM和BO-CNN-LSTM四个模型的损失率曲线。经过50次迭代,所有四个模型中的损失率均小于1.2。具体来说,BO-CNN-LSTM模型的函数损失率为0.15,远低于其他三种模型,其收敛性和稳定性也优于其他模型。

图片

图19显示了四个训练模型的混淆矩阵。总之,这四种型号在所有三种情况下都有诊断错误。其中,对于含沙量为0.74kg/m³的磨损故障,诊断错误率较高。同样,BO CNN LSTM模型在诊断结果和实际结果之间具有最高的一致性,尽管与实际情况相比整体准确性有所降低。

图片

图片

完成训练的模型测试的评估指标得分如图20所示。总体而言,与之前的模型相比,这四个模型的评估得分较低。具体而言,BO-CNN-LSTM模型的评估指标均优于其他三个模型,准确率、精密度、召回率和Flscore分别为90.4%、92.9%、92.9%和93.1%。LSTM模型具有最差的评估指标。与其他三种方法相比,BO.CNN-LSTM模型更能识别实际故障样本,在同时考虑召回率和精度的情况下实现了最佳平衡,具有更好的稳定性和可靠性。图21直观地显示了CNN、LSTM、CNN-LSTM和BO-CNN-LSTM模型在不同工作条件下的测试精度。总的来说,这四种型号在所有三种工作条件下都存在误诊。具体而言,LSTM模型在条件B下表现不佳,平均准确率仅为58.7%。CNN模型的准确率为73.2%,高于LSTM模型,但在诊断条件a和C方面仍存在显著误差。CNN-LSTM和BO-CNN-LSTM模型的准确度高于LSTM模式。组合的CNN-LSTM模型的准确性高于CNNand-LSTM模型的81.4%。BO-CNN-LSTM模型的准确率达到90.4%,超过了其他三个模型。与未优化的CNN-LSTM模型相比,其精度提高了9.0%。它强调了BO CNN LSTM模型在准确性度量方面的卓越性能。这一结果验证了所提出方法的可靠性和稳定性。

图片

图片

图片

PART.05 总结

本文提出了基于BO算法的CNN-LSTM故障诊断模型,用于诊断和识别水轮机的不同故障状态。该模型利用LSTM的特征来弥补CNN算法无法获得时间相关性的不足,增强了模型特征提取的效果。还引入了BO算法用于CNNLSTM模型的超参数调整。深度学习模型的超参数调整问题得到了更好的解决。从结果来看,完成的训练BO.CNN-LSTM模型测试表现优异,测试准确率分别为92.7%、98.4%和90.4%。此外,与没有BO算法的CNN-LSTM模型相比,本文提出的模型的精度分别提高了5.5%、6.3%和9.0%。通过BO算法优化的CNN-LSTM模型具有优异的稳定性、收敛性和更重要的泛化能力。该模型可以更准确地捕获实际故障样本,并对水轮机磨损故障信号进行相对全面的识别和诊断。

同时,比较故障诊断结果,发现水轮机磨损故障的诊断精度低于冲击故障。值得注意的是,磨损故障的诊断精度随着沉积物含量的增加而逐渐提高。本研究可作为对现有水轮机状态监测和故障诊断系统的有价值的补充,并为水电站的防沙运行提供参考。水轮机的运行环境和结构复杂,收集到的故障信号中夹杂着大量的背景噪声,这将降低故障诊断的准确性。同时,水轮机的故障数据相对匮乏;为了提高模型的训练效率、应用范围和收敛速度,下一步开展有针对性的信号预处理和模型迁移学习研究和分析对工程应用更具价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值