《DeepSeek核心技术白话解读》是由西北工业大学计算机学院王鹏教授主讲的公开课内容整理而成,全面解析了DeepSeek大语言模型的技术创新与应用实践。该报告以“用更少的成本做更多的事”为核心逻辑,展示了DeepSeek在性能对标顶尖闭源模型的同时,如何通过算法、架构和工程优化实现低成本与高效率的突破,并展望了人工智能领域的未来发展方向。
该报告不仅系统梳理了DeepSeek的技术突破,还为中国AI技术的开源化、低成本化发展提供了实践范本,兼具学术价值与产业启示。
各章节内容主要如下:
\1. 引言与突破性定位
介绍DeepSeek作为全球首个低成本、高性能开源大语言模型的定位,其训练成本仅为同类闭源模型(如GPT-4)的5%-10%,性能却可与之比肩,并通过多版本(如V3、R1)覆盖语言生成与推理任务。
\2. 技术核心逻辑与版本架构
提出“更少资源,更高效率”的技术哲学,涵盖模型参数精简、计算存储优化、数据标注减少等维度,并解析通用语言模型(DeepSeek-V3)、推理模型(DeepSeek-R1)及蒸馏/量化版本的差异化设计。
\3. 学习策略创新:从监督到强化学习
对比监督学习与强化学习的优劣,重点阐述DeepSeek在后训练阶段完全采用强化学习(R1-Zero算法)替代传统监督微调,通过简单反馈信号实现推理能力的“自我进化”,并以数学问题为例展示模型的“顿悟时刻”。
\4. 模型结构创新:Transformer与混合专家
解析Transformer的全局依赖建模能力及其计算瓶颈,介绍DeepSeek-MOE通过细粒度专家分割提升前向网络效率,同时解决负载均衡与通信路由问题,兼顾性能与资源消耗。
\5. 工程实现创新:极致的硬件适配
详述FP8混合精度训练(提速30%)、4D并行分布式策略(万亿Token训练仅需3.7天)、推理部署分离等工程优化,结合硬件特性实现训练与推理的极致性价比。
\6. 应用段位指南:从青铜到王者
划分用户掌握DeepSeek的五个段位:青铜(基础问答与提示工程)、白银(Agent扩展)、黄金(低参微调)、星耀(后训练优化)、王者(全流程复现),指导用户循序渐进提升技术深度。
\7. 现象反思与现存挑战
探讨DeepSeek引发的行业影响(如硬件市场波动)、部署热潮中的科研方向偏移,以及技术痛点——幻觉问题(生成内容不相关)和模型压缩(剪枝、量化、蒸馏)的优化空间。
\8. 未来展望:多模态与具身智能
提出跨模态大模型(融合文本、图像、语音)与具身智能(机器人自主决策)为下一代AI重点方向,强调DeepSeek团队在相关领域的前沿探索,如复杂环境自适应与多源信息处理。
以下是文档的部分内容,全文36页:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。