博主主页:[
](https://blog.csdn.net/QQ_1309399183?type=blog)
博主简介:计算机视觉领域优质创作者、CSDN博客专家、阿里云专家博主、全网粉丝5万+、专注计算机视觉技术领域和毕业相关项目实战,欢迎高校老师\讲师\同行交流合作
主要内容:毕业相关(代码获取、论文指导、简历模板、学习资料、面试题库、技术咨询)
***文末联系获取***
避免走失。走波收藏
指针仪表检测项目的深入研究与实现
最近,我接手了一个指针仪表检测项目,该项目对实时性和检测精度有极高的要求。为了满足这些需求,我投入了大量的时间研究指针仪表的检测和识别算法,并探索了不同的技术路径来优化检测效果。
初期探索与实践
起初,我在寻找灵感,发现了使用Yolov5结合DeepLabV3Plus进行读数识别的方法。这种方法通过语义分割获取表盘和指针的关键坐标点,然后根据这些点计算指针指向占据整个量程的百分比,最终得出读数。我基于这个思路实现了自己的版本然而,在实际操作中,我发现这种方法虽然有效,但过程较为复杂,而且由于中间步骤较多,可能会对最后的读数精度产生影响。
寻找更直接的解决方案
意识到上述方法的局限性后,我开始思考是否可以直接获取关键点,以简化流程并提高精度。经过一番搜索,我在CSDN上找到了一篇介绍如何使用YoloV8Pose进行关键点检测的文章,这给了我新的启发。该文章展示了如何直接从图像中提取指针仪表针尖、表盘中心以及刻度的起始点和终止点等关键坐标点,从而更直接地计算出读数。这一发现让我决定尝试用YoloV8Pose来提升系统的性能。
优化数据标注与训练
在尝试新方法的过程中,遇到了一些挑战,特别是关于如何有效地标注和训练多类别关键点的问题。现有的关键点检测工具通常只支持单类别的标注,而我的应用场景需要分别标注指针部分和刻度的起始及终止点。为了解决这个问题,我付费参考了一篇详细教程,学会了如何进行多类别的关键点标注和训练。成功训练模型后,我将Pytorch权重转换为ncnn框架下的格式,并编写了C++代码用于实际应用。测试结果表明,这种方案确实优于之前的目标检测加语义分割方法。
进一步优化关键点检测
尽管取得了进展,但在指针顶点(即指针仪表中心和针尖)的检测准确性上仍有提升空间。为了改善这一点,我研究了一些传统图像处理算法,并将它们与YoloV8Pose的结果相结合,以此来提高指针顶点坐标的检测精度。这种方法不仅提高了检测的准确性,还确保了整体系统的稳定性和可靠性。
实际检测流程与结果
- 通过一系列的努力,我构建了一个高效且准确的指针仪表检测系统。
- 该系统首先利用轻量化网络裁剪出包含指针仪表的ROI区域,
- 接着输入到YoloV8-Pose中进行关键点检测,
- 最后根据检测到的关键点计算最终的读数。
- 实际检测结果显示,该系统的精度可以达到0.02Mpa左右,检测时间大约在90-140ms之间(无GPU加速情况下),充分满足了项目对实时性和精度的要求。
结语
本项目是我不断尝试和改进的成果,验证了通过关键点检测来提高指针仪表读数精度的有效性。如果读者认为此代码有价值,同时也可向我索取训练数据集和详细的标注信息,希望我的工作能够为其他开发者提供帮助和灵感。