基于Yolov8_yolo11的河道塑料污染物体检测

关注专栏 不迷路 好文输出提醒中
关注专栏 不迷路 好文输出提醒中

关注专栏 不迷路 好文输出提醒中

河流中的塑料污染检测

塑料污染在海洋环境中已经成为全球性威胁,严重危害海洋物种、人类健康、食品安全以及沿海旅游业。每年全球生产超过3.5亿吨塑料,其中超过1500万吨最终进入世界各大海洋。随着塑料逐渐降解为微塑料,无论是宏观塑料还是微塑料,都对环境造成了严重影响。河流被认为是塑料进入海洋的主要来源,全球超过80%的河流塑料来自仅1000条河流。为应对海洋塑料污染,像“The Ocean Cleanup”这样的组织正在投入大量资源,专注于清理河流中的塑料垃圾。

项目简介

本项目展示了一个使用深度学习技术进行河流中塑料检测的Streamlit应用。该应用采用了先进的目标检测模型,如"YOLO(You Only Look Once)",能够实时识别河流图像中的塑料污染。具体而言,该应用使用了预训练的YOLOv8m模型,该模型经过训练,能够识别和检测河流中可能存在的垃圾。这些垃圾在数据集中通过边界框进行了标注,并被分为四类:塑料袋、塑料瓶、其他塑料垃圾和无塑料垃圾。需要注意的是,部分图像可能不包含任何垃圾,因此这些图像被归类为“无塑料垃圾”。

通过本项目的应用,用户可以上传河流图像,系统将自动检测并标出图像中的塑料污染物,从而提高公众对河流塑料污染问题的意识,并为进一步的环境保护和清理工作提供支持。
在这里插入图片描述

数据集

本项目使用的数据集可以通过convert_to_yolo.py文件下载并转换为YOLO格式。这一数据集包含了许多潜在受到废弃物污染的河流图像,其中的垃圾通过边界框标注,主要包含以下几类:

  • 塑料袋(Plastic Bags)
  • 塑料瓶(Plastic Bottles)
  • 其他塑料垃圾(Other Plastic Waste)
  • 无塑料垃圾(No Plastic Waste)

该数据集被分为训练集和验证集,训练集包含3407张图像,验证集包含425张图像。数据集的结构经过YOLO格式转换后,用户可以将其直接用于模型的训练和测试。为了便于使用,数据集还提供了预处理脚本,能够自动完成从原始数据到YOLO格式的转换。

此外,项目中所用的YOLOv8m模型已经在此数据集上进行了预训练,因此用户可以直接使用该预训练模型进行塑料污染物检测,而无需从头开始训练模型。通过这种方式,用户可以减少训练时间,快速获得可靠的检测结果。

预处理与数据增强

在这里插入图片描述

为提高模型的准确性和鲁棒性,数据预处理和数据增强是本项目中的重要环节。以下是主要的预处理步骤和数据增强技术:

  1. 图像尺寸调整:所有图像都被调整为416x416像素,以适配YOLO模型的输入要求。这一调整确保了图像的一致性,使模型能够在多种尺寸的图像中进行有效检测。

  2. 自动旋转和翻转:为了增强模型对不同拍摄角度和视角的适应能力,图像进行了随机旋转和水平、垂直翻转。

  3. 亮度和对比度调整:图像的亮度和对比度也进行了调整,以模拟不同光照条件下的场景,增强模型的泛化能力。

  4. 随机裁剪和缩放:通过裁剪图像的不同部分,并随机缩放,模型能够学习到从不同区域识别塑料污染物的能力。

通过以上数据增强技术,模型能够从多角度、多场景下学习到更丰富的特征,从而在面对复杂环境时依然能够保持较高的检测准确性。
在这里插入图片描述

YOLO模型介绍

YOLO(You Only Look Once)是一种非常高效的目标检测算法,与传统的目标检测方法不同,YOLO采用了一种单一神经网络结构,能够同时进行目标分类和定位。YOLO的优点在于其速度快,能够实现实时检测,这对于实际应用非常重要。在本项目中,我们使用了YOLOv8m模型,它是YOLO系列中的一种优化版本,具有较高的检测精度和更小的计算负载,非常适合用于处理河流图像中的塑料垃圾检测任务。
在这里插入图片描述

YOLOv8m的优势

  • 高精度检测:YOLOv8m在精度和速度方面做了优化,能够在较短时间内完成对图像中塑料污染物的检测。
  • 高效性:相比于YOLOv5,YOLOv8m在保持较高精度的同时,减少了计算资源的消耗,能够在较低的硬件配置下运行。
  • 实时性:YOLOv8m支持实时目标检测,非常适合用于河流污染物的在线监控和实时清理。

实验与测试

在实验过程中,项目使用了通过YOLO格式转换的河流图像数据集。以下是一些关键实验步骤和结果:

  1. 训练模型:我们使用3407张训练集图像对YOLOv8m模型进行训练。经过数小时的训练,模型能够准确识别图像中的塑料袋、塑料瓶和其他塑料垃圾。验证集的结果显示,模型在处理各种光照和角度变化的图像时仍能够保持较高的准确度。

  2. 评估模型性能:使用验证集对训练后的模型进行评估,结果显示,模型在准确性、召回率和F1分数方面表现良好。具体来说,模型能够准确识别出大部分的塑料垃圾,并且漏检率较低。

  3. 实时检测测试:在Streamlit应用中集成YOLOv8m模型后,用户可以上传实时拍摄的河流图像,系统将自动识别并标记图像中的塑料污染物。测试结果表明,模型能够在数秒钟内处理图像并给出预测结果。

使用指南

如何使用

    你可以通过的代码库:

    
    cd plastic-detection
    
  1. 安装依赖
    项目使用了Streamlit、PyTorch等库,因此需要安装相关依赖:

    pip install -r requirements.txt
    
  2. 启动应用
    启动Streamlit应用:

    streamlit run app.py
    

在这里插入图片描述

  1. 上传图像并检测
    启动应用后,用户可以在网页界面上传河流图像,系统会自动检测并标出图像中的塑料垃圾。

结论

通过本项目,我们成功开发了一个基于YOLOv8m模型的塑料污染检测系统,能够实时识别和定位河流中的塑料污染物。该系统不仅提高了对塑料污染问题的关注,还为环境保护工作提供了有效的技术支持。未来,随着技术的进一步发展,我们希望能够扩展该系统的功能,加入更多类型的污染物检测,并在更广泛的河流和水域中应用。通过这种智能化的监控和检测手段,我们可以为减少塑料污染,保护水资源和海洋生态环境贡献更多力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值