采用深度学习方法进行图像缺陷检测_使用ResNet50预训练模型来对 太阳能电池板缺陷数据集 12类的缺陷类型进行检测

采用深度学习方法进行图像缺陷检测_使用ResNet50预训练模型来对 太阳能电池板缺陷数据集 12类的缺陷类型进行检测

太阳能电池板缺陷数据集 在这里插入图片描述

crack:裂缝
finger:指状物;(常指不好的)痕迹 (具体含义需结合语境,在电子元件等领域可能指引脚等)
black core:黑心(比如材料内部出现黑色的核心部分)
thick line:粗线
star crack:星状裂纹
corner:角落;拐角处;(物体的)角
fragment:碎片;片段
scratch:划痕;刮痕
horizontal dislocation:水平错位
vertical dislocation:垂直错位
printing_error:印刷错误
short circuit:短路
在这里插入图片描述
文字及代码仅供参考。

4500张带标签的

4500张带标签的太阳能电池板缺陷数据集,XML格式,采用深度学习方法进行图像分类和缺陷检测。在这里插入图片描述

1. 数据理解与准备

加载和解析XML标签文件

首先,我们需要加载并解析原始图像及其对应的XML标签文件,以提取出每个图像中的缺陷信息。

import os
import xml.etree.ElementTree as ET
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical

# 定义函数加载图像和解析XML标签
def load_images_and_parse_xml(image_folder, xml_folder):
    images = []
    labels = []

    for filename in os.listdir(image_folder):
        if filename.endswith(".jpg") or filename.endswith(".png"):  # 根据文件类型调整
            img_path = os.path.join(image_folder, filename)
            xml_filename = os.path.splitext(filename)[0] + '.xml'
            xml_path = os.path.join(xml_folder, xml_filename)

            img = Image.open(img_path).convert('RGB')
            img_array = np.array(img)
            images.append(img_array)

            tree = ET.parse(xml_path)
            root = tree.getroot()
            defect_type = root.find('object').find('name').text  # 假设一个图像只有一个缺陷类型
            labels.append(defect_type)

    return np.array(images), np.array(labels)

# 加载图像和解析XML标签
image_folder = 'path/to/images'
xml_folder = 'path/to/xml_labels'

images, labels = load_images_and_parse_xml(image_folder, xml_folder)

# 查看样本图像及其标签
plt.imshow(images[0])
plt.title(f'Label: {labels[0]}')
plt.show()

# 编码标签
le = LabelEncoder()
encoded_labels = le.fit_transform(labels)
categorical_labels = to_categorical(encoded_labels)

# 显示标签映射
print("Label Mapping:", dict(zip(le.classes_, range(len(le.classes_)))))

2. 数据预处理

图像预处理
  • 调整大小:确保所有图像都具有相同的尺寸。
  • 归一化:将像素值缩放到[0, 1]范围。
  • 数据增强:通过旋转、翻转、亮度调整等操作来增加数据多样性。
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 调整大小
target_size = (224, 224)  # 根据模型需求调整
resized_images = [np.array(Image.fromarray(img).resize(target_size)) for img in images]
resized_images = np.array(resized_images)

# 归一化
normalized_images = resized_images / 255.0

# 数据增强
datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True,
    brightness_range=[0.8, 1.2]
)

# 应用数据增强
augmented_images = datagen.flow(normalized_images, categorical_labels, batch_size=len(normalized_images)).next()[0]

# 分割数据集
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(augmented_images, categorical_labels, test_size=0.2, random_state=42)

3. 模型选择与训练

我们可以使用卷积神经网络(CNN)进行分类任务。这里我们选择使用ResNet50预训练模型,并在顶部添加自定义分类层。

from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

# 创建模型
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model = Sequential([
    base_model,
    GlobalAveragePooling2D(),
    Dense(128, activation='relu'),
    Dense(len(le.classes_), activation='softmax')
])

# 冻结基础模型的层
for layer in base_model.layers:
    layer.trainable = False

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=32)

4. 模型评估与优化

评估模型性能,并尝试调整超参数或引入更多特征来提高模型的表现。

# 在测试集上评估模型
test_loss, test_accuracy = model.evaluate(X_test, y_test)
print(f'Test Loss: {test_loss}, Test Accuracy: {test_accuracy}')

5. 测试与推理

在测试集上评估模型表现,并保存最佳模型用于后续的推理任务。

# 使用模型进行预测
predictions = model.predict(X_test)

# 将预测结果反编码回原始标签
predicted_labels = le.inverse_transform(np.argmax(predictions, axis=1))

# 显示预测结果
for i in range(3):  # 显示前三个样本的预测结果
    plt.figure(figsize=(6, 2))
    plt.subplot(1, 2, 1)
    plt.imshow(X_test[i])
    plt.title(f'Prediction: {predicted_labels[i]}')
    plt.subplot(1, 2, 2)
    plt.imshow(X_test[i])
    plt.title(f'Ground Truth: {le.inverse_transform([np.argmax(y_test[i])])[0]}')
    plt.show()

注意事项 - XML标签解析

对于XML标签,以下是一些额外的建议:

  • 多缺陷实例:如果一个图像中存在多个缺陷实例,确保正确解析每个对象的标签信息,并根据需要进行多标签分类。

  • 边界框信息:如果XML文件包含边界框(bounding box)信息,可以在模型中加入目标检测模块(如YOLO、Faster R-CNN),以便同时进行分类和定位。

  • 属性信息:一些XML标签可能包含额外的属性信息(如缺陷严重程度)。这些信息可以作为辅助特征,帮助提高模型的准确性。

特定缺陷类型的处理

对于特定的缺陷类型,以下是额外的建议:

  • 裂缝 (crack)星状裂纹 (star crack):可以通过边缘检测滤波器增强这类特征,或者使用专门的目标检测模型来识别不规则形状。

  • 指状物 (finger):如果指的是电池板上的电极引线,注意它们的形态和位置,避免误分类。可以利用形态学操作来突出这些特征。

  • 黑心 (black core):这种缺陷通常位于材料内部,可以通过多光谱成像技术捕捉更深层次的信息。

  • 粗线 (thick line)划痕 (scratch):这些缺陷通常有明显的纹理特征,可以通过纹理分析算法辅助分类。

  • 角落 (corner)碎片 (fragment):注意图像裁剪时保持完整性和一致性,避免因裁剪导致的误分类。

  • 水平错位 (horizontal dislocation)垂直错位 (vertical dislocation):可以通过几何变换增强模型对位置变化的鲁棒性。

  • 印刷错误 (printing_error)短路 (short circuit):这些缺陷可能涉及复杂的电路结构,确保有足够的样本覆盖所有可能的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值