基于 YOLOv11 的目标检测与轴承缺陷质量控制

YOLO-Quality-Control:基于 YOLOv11 的目标检测与质量控制

项目概述

本项目旨在利用 YOLOv11(You Only Look Once 第 11 版)实现制造业生产线中的实时目标检测。其核心目标是通过识别物体、将其分类为“损坏”或“正常”并高效计数,从而自动化质量控制流程。该系统可集成到生产线中,提升生产效率和产品质量。

项目目录
  1. 概述
  2. 数据集
  3. 方法论
  4. 结果
  5. 使用说明
  6. 演示
  7. 致谢
    在这里插入图片描述
概述

制造业需要高效的质量控制系统以确保产品一致性并减少浪费。本项目采用 YOLOv11,一种先进的目标检测模型,实现以下功能:
• 检测生产线上的物体。
• 将其分类为“损坏”或“正常”。
• 统计每类物体的数量。
该解决方案设计为快速、准确且可扩展,适用于工业应用。

数据集

本项目使用的数据集来自 Kaggle,包含在不同条件下拍摄的物体图像。每个物体均标注了边界框,并分类为以下两类:
损坏:存在可见缺陷的物体。
正常:符合质量标准的物体。

关键信息
• 数据集名称
• 图像数量:700
• 标注:边界框和标签(损坏/正常)或波斯语。
在这里插入图片描述

方法论

模型架构
使用 YOLO11l 和 YOLO11s,这是一种以速度和准确性著称的实时目标检测模型。其关键特性包括:
• 单次检测以实现高速推理。
• 支持多类别(本例中为“损坏”和“正常”)。

训练过程

  1. 预处理
    • 将图像调整为固定分辨率(如 512x512)。
    • 将数据划分为训练集(80%)、验证集(10%)和测试集(10%)。
  2. 训练
    • 在自定义数据集上微调 YOLO11。
    • 使用迁移学习以利用预训练权重。
  3. 评估
    • 指标:精确率(Precision)、召回率(Recall)、平均精度(mAP)和 F1 分数。
    • 在测试集上实现了 0.95% 的 mAP。

部署
训练后的模型通过 Python 和 OpenCV 部署到生产线模拟器中,用于实时推理。

结果

性能指标

指标
精确率95.55%
召回率95.65%
mAP@0.595.10%
损失0.17

示例输出
以下是一个测试图像上的模型输出示例视频:下载链接
在这里插入图片描述

使用说明

环境要求
• Python 3.10.16
• 安装依赖项:

pip install torch torchvision opencv-python ultralytics
总结

本项目展示了 YOLOv11 在制造业质量控制中的强大能力,通过实时目标检测和分类,显著提升了生产效率和产品质量。未来,随着模型的进一步优化,其应用范围将更加广泛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值