yolov8黑马动物姿态估计

HorsePose-YOLOv8 🐎
马姿态估计-YOLOv8系统
在这里插入图片描述

📋 项目概览
本代码库实现了基于YOLOv8n-pose模型的马匹姿态估计系统。项目核心内容包含:

  • 使用Horse-10数据集对模型进行关键点检测的微调
  • 完整实现流程:数据预处理 → 模型训练 → 性能评估 → 视频实时推理

👥 项目成员:
🧑‍💻 Ih(技术负责人)
👨‍💻 R(算法工程师)
在这里插入图片描述

🛠️ 系统要求

  • Python 3.9+ 🐍
  • Ultralytics YOLOv8框架 🤖
  • PyTorch 2.6.0+(建议启用CUDA加速)🔥
  • 科学计算套件:NumPy/Pandas/Matplotlib/Seaborn/WordCloud/OpenCV 📚
  • 显卡:Tesla T4或同级算力(推荐使用Google Colab云端环境)🖥️
    在这里插入图片描述

📊 数据集规范

  • 数据集名称:Horse-10 🐴
  • 图像总量:8,114张 📸
  • 子目录分类:30个场景类别(如"栗色马-强光"、"棕色马-阴影"等)📂
  • 关键点标注:22个解剖部位(鼻尖、眼睛、肩关节、髋关节等)📍
  • 标注完整性:
    • 多数图像含10-22个有效关键点
    • 约3,000张图像达到20个关键点标注 📊
  • 数据源:Horse-10 GitHub仓库 🔗

💻 代码架构
主 Notebook:fine-tuning of YOLOv8-pose for APE(1).ipynb 📓
包含:

  1. 数据集克隆 📥
  2. 依赖项安装(Ultralytics/Seaborn/WordCloud)🛠️
  3. 库导入(Pandas/Matplotlib/OpenCV)📚
  4. 通过GIF展示推理示例 🎞️
  5. 环境配置:Python 3.9.19 + PyTorch 2.6.0+cu124 + GPU加速 🐍

📈 模型评估
在200张验证集图像上的表现:

指标性能值备注
边界框mAP@500.984
边界框mAP@50–950.921(精确率1.0,召回率0.939) ✅
姿态mAP@500.988
姿态mAP@50–950.844(精确率1.0,召回率0.957) 📍
推理速度3.3ms/帧Tesla T4 GPU ⚡
硬件环境CUDA:0(Tesla T4, 显存15095MB) 🖥️
在这里插入图片描述

评估结论:

  • 边界框检测表现优异
  • 关键点预测精度良好
  • 在严格阈值下存在精度损失(主要源于遮挡或数据分布不均)📉

(注:保留所有技术术语的英文原名和计量单位,关键指标采用表格呈现符合技术文档规范,emoji图标用于快速定位内容模块)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值