基于深度学习的目标计数与测速与车牌检测系统开发

基于深度学习的目标计数与测速系统开发——Yolov8-CountingSpeed-GUI技术报告

在这里插入图片描述

摘要:

本文详细介绍了一个基于YOLOv8算法的目标计数与速度测量系统。该系统采用PyTorch框架实现,具备直观的图形用户界面(GUI),可实时检测视频流中的移动物体,并精确计算其通过特定区域的数目及运动速度。项目代码已开源,包含完整的模型训练、验证及部署流程。

  1. 系统概述
    1.1 功能特性
    本GUI系统集成了三大核心功能:
    (1) 高精度目标检测:基于YOLOv8s模型,支持自定义对象类别识别
    (2) 多目标追踪:采用DeepSORT算法实现跨帧目标关联
    (3) 速度测算:通过像素-实际距离映射转换,计算物体运动速度(km/h)

1.2 技术栈

  • 开发语言:Python 3.9
  • 深度学习框架:PyTorch 1.12.0 + CUDA 11.6
  • 图形界面:PyQt5
  • 辅助工具:OpenCV 4.6, NumPy 1.23
    在这里插入图片描述
  1. 环境配置指南
    2.1 基础环境搭建
# 创建conda虚拟环境
conda create -n yolov8 python=3.9  
conda activate yolov8

# 安装PyTorch套件
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116

# 安装项目依赖
pip install -r requirements.txt

在这里插入图片描述

2.2 硬件要求

  • 显卡:NVIDIA GTX 1660及以上(需支持CUDA 11.6)
  • 显存:≥4GB
  • 内存:≥8GB
  1. 模型训练流程
    3.1 数据集准备
    我们构建了包含3类目标的定制数据集:
  • 车辆(Car)
  • 行人(Pedestrian)
  • 非机动车(Cyclist)

数据集统计:

类别训练集验证集测试集
车辆4,5281,1321,415
行人3,2178041,006
非机动车2,845711889

注:数据集可通过ouzw5@mail2.sysu.edu.cn联系获取

3.2 训练参数配置

# yolov8s_custom.yaml
hyperparameters:
  lr0: 0.01
  lrf: 0.01
  momentum: 0.937
  weight_decay: 0.0005
  warmup_epochs: 3.0
  batch_size: 16

3.3 训练过程监控
使用TensorBoard记录训练指标:

  • mAP@0.5: 0.892
  • Precision: 0.927
  • Recall: 0.865
  1. 系统运行指南
    4.1 基础启动
python main.py

4.2 功能模块选择
系统支持两种检测模式:

  1. 通用物体检测(默认yolov8s.pt)
  2. 车牌专用检测(需选择license.pt)

4.3 界面操作说明

  • 区域绘制:按住鼠标左键划定检测区域
  • 参数设置:可调整检测置信度(0.3~0.9)
  • 数据导出:支持CSV格式的检测结果输出
  1. 性能评估
    在NVIDIA RTX 3060显卡上的测试结果:
    | 分辨率 | FPS | 内存占用 |
    |-----------|------|----------|
    | 640x480 | 42 | 2.3GB |
    | 1280x720 | 28 | 3.1GB |
    | 1920x1080 | 15 | 4.7GB |

  2. 扩展应用
    本系统可应用于以下场景:

  • 交通流量监控
  • 超市人流量统计
  • 生产线物品计数
  • 体育训练速度分析
  1. 致谢
    感谢中山大学计算机学院提供的计算资源支持,特别鸣谢李华教授在目标追踪算法方面的专业指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值