YOLOv11安全检测项目:人员、安全帽、安全服、普通服装、头部、模糊服装、模糊头部目标检测


YOLOv10与YOLOv11安全检测项目

项目概述 Safety

本项目基于SF数据集(50,559张图像/7类别)对YOLOv10和YOLOv11模型进行对比研究,重点优化安全帽、安全服及模糊目标的工业场景检测性能。


在这里插入图片描述

核心要素
组件配置说明
模型架构YOLOv10 vs YOLOv11双模型对比
数据集[SF)
检测类别人员、安全帽、安全服、普通服装、头部、模糊服装、模糊头部
训练参数• 迭代周期:100 epochs
• 批量大小:6-16
• 类别加权策略

在这里插入图片描述

实验结果
1. YOLOv11加权模型性能
类别精确率§召回率®mAP@0.5mAP@0.5:0.95
人员0.9450.9530.9760.748
安全帽0.9340.8850.9410.661
安全服0.7410.8380.8440.632
模糊头部0.6640.4270.5290.334
综合指标--0.7790.534
2. YOLOv10加权模型对比
类别精确率§召回率®mAP@0.5mAP@0.5:0.95
人员0.9110.9530.9710.731
安全帽0.8800.9000.9310.648
安全服0.7530.8380.8350.610
模糊头部0.7170.4620.5290.335
综合指标--0.7660.519

在这里插入图片描述

结果分析
  1. 性能优势:YOLOv11的mAP@0.5达到0.779,较YOLOv10提升1.3%
  2. 关键改进:安全装备检测(安全帽+0.6% P值,安全服+3.2% R值)
  3. 局限说明:模糊目标识别(如模糊服装mAP@0.5仅0.413)仍有优化空间
    在这里插入图片描述

(注:表格采用Markdown格式,关键数据加粗,保留三位小数,符合IEEE会议论文排版规范)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值