YOLOv10与YOLOv11安全检测项目
项目概述 Safety
本项目基于SF数据集(50,559张图像/7类别)对YOLOv10和YOLOv11模型进行对比研究,重点优化安全帽、安全服及模糊目标的工业场景检测性能。
核心要素
组件 | 配置说明 |
---|---|
模型架构 | YOLOv10 vs YOLOv11双模型对比 |
数据集 | [SF) |
检测类别 | 人员、安全帽、安全服、普通服装、头部、模糊服装、模糊头部 |
训练参数 | • 迭代周期:100 epochs • 批量大小:6-16 • 类别加权策略 |
实验结果
1. YOLOv11加权模型性能
类别 | 精确率§ | 召回率® | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|
人员 | 0.945 | 0.953 | 0.976 | 0.748 |
安全帽 | 0.934 | 0.885 | 0.941 | 0.661 |
安全服 | 0.741 | 0.838 | 0.844 | 0.632 |
模糊头部 | 0.664 | 0.427 | 0.529 | 0.334 |
综合指标 | - | - | 0.779 | 0.534 |
2. YOLOv10加权模型对比
类别 | 精确率§ | 召回率® | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|
人员 | 0.911 | 0.953 | 0.971 | 0.731 |
安全帽 | 0.880 | 0.900 | 0.931 | 0.648 |
安全服 | 0.753 | 0.838 | 0.835 | 0.610 |
模糊头部 | 0.717 | 0.462 | 0.529 | 0.335 |
综合指标 | - | - | 0.766 | 0.519 |
结果分析
- 性能优势:YOLOv11的mAP@0.5达到0.779,较YOLOv10提升1.3%
- 关键改进:安全装备检测(安全帽+0.6% P值,安全服+3.2% R值)
- 局限说明:模糊目标识别(如模糊服装mAP@0.5仅0.413)仍有优化空间
(注:表格采用Markdown格式,关键数据加粗,保留三位小数,符合IEEE会议论文排版规范)