红嘴蓝鹊优化算法(RMBO)-2024年SCI顶刊新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、种群初始化

二、寻找食物

三、攻击猎物

四、储存食物

算法伪代码

性能测评

参考文献

完整代码


红嘴蓝鹊优化算法(Red-billed blue magpie optimizer, RBMO)是一种新型的元启发式算法(智能优化算法),灵感来源于红嘴蓝鹊的合作、高效的捕食行为。作者在CEC2014和CEC2017测试函数和无人机路径规划应用(二维和三维)中对RBMO进行测试,其得到了较好的解,证明了其解决NP-hard问题的有效性。该成果由Shengwei Fu等人于2024年5月发表在SCI顶刊《Artificial Intelligence Review》上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

灵感:红嘴蓝鹊是一种灵活的捕食者,他们以各种方式获取和储存食物,同时在狩猎行为中也表现出社会性和合作性。受此启发,作者提出了一种新的元启发式算法RBMO。

一、种群初始化

与大多数算法一样,通过以下公式产生的RBMO的初始搜索代理:

式中,ub和lb分别为问题的上界和下界,Rand表示0到1之间的随机数。

二、寻找食物

在寻找食物的过程中,红嘴蓝喜鹊通常以小团体(2至5只)或成群(10只以上)的方式行动,以提高搜索效率。它们采用各种各样的技术,如在地上跳跃、行走或在树上搜寻食物资源。这种适应性和灵活性使红嘴蓝喜鹊能够根据环境条件和可用资源采用多种狩猎策略,确保获得充足的食物供应。

当小团体探索食物时使用公式(3)进行迭代:

其中t表示当前迭代次数,Xi(t+1)表示第i个新的搜索代理位置,p表示从所有搜索个体中随机选择的2到5个小群体中的红嘴蓝喜鹊的数量,Xm表示随机选择的第m个个体,Xi表示第i个个体,Xrs(t)表示当前迭代中随机选择的搜索代理。

当成群时使用公式(4)进行迭代:

其中q表示集群在探索食物时的搜索代理数量,介于10到n之间。同样,它也是从整个群体中随机选择的。

三、攻击猎物

红嘴蓝喜鹊在追捕猎物时表现出高度的狩猎熟练度和合作精神。它们采用快速啄食、跳跃捕捉猎物或飞行捕捉昆虫等战术。在小团体行动中,主要目标通常是小型猎物或植物。相应的数学模型如式(5)所示。

当红嘴蓝喜鹊成群行动时,它们能够共同瞄准大型猎物,如大型昆虫或小型脊椎动物。这种行为的数学表达式见式(6)。这种掠食性狩猎行为强调了红嘴蓝喜鹊所拥有的多种策略和技能,使其成为一种多才多艺的捕食者,擅长在各种情况下成功获取食物。

其中Xfood(t)表示食物的位置,CF=(1-t/T)^(2*(t/T)), Randn表示用于生成标准正态分布(平均值0,标准差1)的随机数。

四、储存食物

除了寻找和攻击食物外,红嘴蓝喜鹊还将多余的食物储存在树洞或其他隐蔽的地方,以备将来食用,确保在食物短缺时稳定的食物供应。这个过程保留了解决方案的信息,方便个人找到全局最优值。数学模型如Eq.(7)所示。

其中,fitness(i)old和fitness(i)new分别表示第i只红嘴蓝喜鹊位置更新前后的适应度值。

算法伪代码

总体上看,在RBMO中,优化过程从生成一组随机的候选解开始,称为种群。无论是次优解还是最优解,RBMO的搜索策略总是通过重复轨迹寻找合适的位置。其中储藏食物阶段提高了RBMO的开发利用能力。最后,RBMO搜索过程在满足最终标准时结束。

需要注意,在捕猎过程中,虽然红嘴蓝喜鹊的种群规模不同,但小规模种群和成群时的总数保持相似。在本文中,作者提出了一个均衡人口的系数,设为0.5。

以下提供RBMO算法的伪代码,非常清晰!

性能测评

原文在CEC2014和CEC2017测试函数和无人机路径规划应用(二维和三维)中对RBMO进行测试,并与以下三类广泛认可的算法进行了比较:(1)先进的变体,(2)最近提出的算法,(3)高性能优化算法,包括CEC获奖者。实验结果表明,RBMO得到了较好的解,证明了其解决NP-hard问题的有效性。(下图为CEC2017函数列表)

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,并与23年新出的霜冰优化算法RIME进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,RBMO在大部分函数上都超过了23年的霜冰优化算法,在F8这个复杂多峰函数上略微若于RIME算法~总体上看效果依旧不错,大家应用到各类预测、优化问题中是一个不错的选择~

参考文献

[1]Fu S, Li K, Huang H, et al. Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems[J]. Artificial Intelligence Review, 2024, 57(6): 1-89.

完整代码

如果需要免费获得图中的完整测试代码,只需后台回复关键字,不区分大小写:

RMBO

也可后台回复个人需求(比如RMBO-SVM)定制以下RMBO算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.其他:机器人路径规划、无人机三维路径规划、DBSCAN聚类、VRPTW路径优化、微电网优化、无线传感器覆盖优化、故障诊断等等均可~

5.原创改进优化算法(适合需要创新的小伙伴):原创改进2024年的RMBO优化算法以及麻雀SSA、蜣螂DBO等任意优化算法均可,保证测试函数效果!

<think>好的,我现在要回答用户关于红嘴优化算法(RBMO)是否属于粒子群算法(PSO)以及两者关系的问题。首先,我需要确认两者的基本定义和原理,然后比较它们的异同点。 根据引用中的信息,RBMO是受红嘴觅食行为启发的群体智能算法,模仿合作和竞争机制,用于解决优化问题[^1][^2][^4]。而粒子群算法(PSO)则是模拟鸟群或鱼群的社会行为,每个粒子根据个体和群体的最佳位置更新自己的速度和位置。 接下来,我需要分析两者的异同。RBMO可能包含类似于PSO的群体协作,但具体机制不同。例如,RBMO提到的搜索、追逐、攻击猎物和食物储存行为[^4],这可能涉及不同的策略,如分工合作或者信息共享方式的不同。而PSO主要依赖个体和全局最优解的引导。 另外,引用中提到RBMO在测试函数和无人机路径规划中的应用,表明其处理NP-hard问题的能力[^2]。而PSO通常用于连续优化问题,这可能说明两者在应用场景上有重叠,但算法机制不同。 然后,我需要确定RBMO是否属于PSO的一种变体。根据现有资料,RBMO是新型元启发式算法,独立于PSO提出,因此应属于不同的算法类别,虽然同属群体智能,但基础原理不同。 最后,要确保回答结构清晰,先结论后分析,引用相关文献支持观点,并生成相关问题。</think>红嘴优化算法(RBMO)**不属于粒子群算法(PSO)**,两者虽然同属于群体智能优化算法,但设计原理和机制存在显著差异。以下是具体分析: --- ### 1. **算法原理对比** - **红嘴优化算法(RBMO)** - 灵感来源于红嘴的**合作捕食行为**,模拟其搜索、追逐、攻击猎物和食物储存等过程。 - 强调个体之间的**分工协作竞争机制**,例如部分个体负责探索(全局搜索),另一部分负责开发(局部搜索),并通过信息共享优化群体行为[^2]。 - 包含独特的策略如**食物储存行为**,用于平衡算法的探索开发能力[^4]。 - **粒子群算法(PSO)** - 灵感来源于鸟群或鱼群的**社会行为**,粒子通过跟踪个体历史最优解(`pbest`)和群体最优解(`gbest`)更新自身速度和位置[^3]。 - 核心机制是**速度-位置模型**,依赖简单的数学公式驱动搜索过程,缺乏对复杂分工的模拟。 --- ### 2. **关键差异点** | **特征** | **RBMO** | **PSO** | |-------------------|-----------------------------------|-----------------------------| | **行为模型** | 合作捕食(分工、竞争、储存)[^4] | 社会协作(跟踪最优解)[^3] | | **参数更新机制** | 多阶段行为模拟(搜索、攻击等) | 速度-位置公式 | | **探索开发** | 通过分工协作自然平衡 | 需调整惯性权重等参数 | | **应用场景** | 复杂优化问题(如无人机路径规划) | 连续空间优化问题[^3] | --- ### 3. **关系总结** - **共同点**: 两者均属于**元启发式算法**,适用于解决NP-hard问题,且依赖群体协作机制[^2][^3]。 - **区别**: RBMO是**新型独立算法**,其设计更贴近自然界复杂行为,而PSO基于简化数学模型。RBMO的提出者明确将其PSO等传统算法对比,验证其独立性和优越性[^2][^4]。 --- ### 4. **性能应用对比** - **RBMO**在CEC2014/CEC2017测试函数和无人机路径规划中表现出更强的全局搜索能力[^2]。 - **PSO**因简单高效,常用于参数调优(如XGBoost模型优化),但易陷入局部最优。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值