企业发展优化算法(ED)-2024年SCI一区Top新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、种群初始化

二、任务

三、结构

四、技术

五、人

六、转换机制

算法伪代码

性能测评

参考文献

完整代码


​企业发展优化算法(Enterprise Development, ED)是一种新型的元启发式算法(智能优化算法),灵感来源于企业的发展过程。不同于以往的动物园算法,该算法清晰易懂,与我们日常使用的优化算法相近,发表的期刊等级很高,值得一试!该成果由Dinh-Nhat Truong于2024年8月发表在SCI一区Top期刊《Engineering Structures上!

由于发表时间较短,谷歌学术上仅被引用2次!你先用,你就是创新!

原理简介

灵感:每一个公司都必须努力不断发展。这种发展依赖于实验和资源。Leavitt对产业组织进行了20多年的调查,认为复杂的组织系统依赖于四种类型的变量进行交互:任务、结构、技术和人。这些变量可以看作是周期性的,如下图所示。

一、种群初始化

像所有的元启发式优化器一样,ED优化器随机生成具有均匀分布的初始总体进行优化:

二、任务

在业务流程管理中,任务可以有不同的形式,也可以作为日常事务存在。为了模拟任务活动,将最差的活动替换为:

其中xworst是搜索空间中最差的单个解,ub和lb分别是搜索空间的上界和下界。

三、结构

早期结构模型的缺点之一是工作设计几乎完全由任务和技术变量决定,需要考虑人或社会变量。他们在《为人类效能设计组织》一书中提供了一些实例,说明在社会工程意义上对信息理论工作进行适当的重新设计会影响人类的态度和产出。

在本研究中,作者将组织结构视为工作流,认为新的组织结构会受到组织中其他工作流结构和当前最优工作流的影响,因此通过以下公式进行更新:

其中xsi(t)是新结构,xbest(t-1)是当前的最优解,xsc(t-1)是影响新结构的其他工作流的中心结构,xsrand1, xsrand2,…, xsrandom是从总体中的解中随机选择的,m是影响新结构的工作流数量;经过实验确定M=3可以在较短的计算时间内产生最优结果。

、技术

许多研究者都强调了技术在影响组织变革中的关键作用。在很多情况下,组织重塑自己不是为了直接响应非凡的想法,而是为了响应能够刺激这些想法实现的技术发展。从战略开放的角度来看,组织必须加大探索和开发力度,以获取和应用创新活动所需的知识。下式模拟了这一步勘探与开发的平衡:

其中xbest(t-1)-xτrand1(t-1)是探索阶段,xbest(t-1)-xτi(t-1)是开发阶段。

五、人

组织必须培养一种参与式的工作文化,通过尊重他人和利益相关者来促进个人创造力和团队合作。这样的工作文化会影响员工对可持续发展的承诺和参与。关怀对于任何制造系统或供应链的成功都是至关重要的。假设特征是一个维度,下面的方程描述了随机选择特征并更新人们的活动是如何模拟的(见图5)数学模型如下式所示:

其中d是人的随机特征。该特性的计算方法如下:

其中m是影响个体的人数,m = 3是为了在较短的计算时间内产生最优结果,nd是解决方案的维度数。

六、转换机制

在提出的ED算法中,假设组织一次只关注一个步骤。因此,四个步骤(即任务、结构、技术和人员)中只有一个在时间t发生,并且由活动转换机制控制。当rand(0,1) < p1(其中p1 = 0.1)时,表示该任务步骤出现的概率为10%。将作用结构、技术步骤和人步骤的机理以函数c(t)的形式引入,如下式所示。c(t)值分别为1、2和3时,结构、技术和人步骤发生:

其中Maxiter是最大迭代次数,t是第t次迭代。

算法伪代码

为了使大家更好地理解,这边给出作者算法的伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者在50个数学函数和54个CEC函数进行了评估,并与6个最新算法、3个CEC 2020单目标约束优化获奖者和10个知名算法进行了比较,实验结果表明其可以有效地解决复杂的结构设计问题。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和经典的正余弦优化算法SCA进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法在大部分函数上均优于经典的SCA算法,且拥有不错的跳出局部最优的能力!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Truong D N, Chou J S. Metaheuristic algorithm inspired by enterprise development for global optimization and structural engineering problems with frequency constraints[J]. Engineering Structures, 2024, 318: 118679.

完整代码

如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

ED

也可点击下方小卡片,再后台回复个人需求(比如ED-BP)定制以下ED算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、故障诊断等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2024年的企业发展优化算法ED以及班翠鸟PKO、蜣螂DBO等任意优化算法均可,保证测试函数效果!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值