龙卷风优化算法(TOC)-2025年SCI顶刊新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、初始化

二、风暴演变

三、风暴速度与科里奥利力

四、雷暴到龙卷风的演变

五、随机形成的风暴

算法伪代码

性能测评

参考文献

完整代码


龙卷风优化算法(Tornado optimizer with Coriolis force, TOC)是一种新型的元启发式算法(智能优化算法),灵感来源于龙卷风的循环过程以及雷暴和风暴演变成科里奥利力龙卷风的自然启发。不同于以往的动物园算法,该算法灵感新颖,内容丰富,发表期刊的等级也很高,值得一试!该成果由Malik Braik于2025年2月发表在SCITop期刊《Artificial Intelligence Review上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

灵感:当风暴系统内的风速和方向发生变化时,周期就开始了。这就产生了一种旋转效应,通过雷雨云的上升气流垂直倾斜。在这种情况下,风暴通常发生在那个点。当风暴加剧时,它通常会变成超级单体雷暴。换句话说,一个强大的雷暴会在大气中几英里的高空形成一个旋转系统,成为超级单体或雷雨云单体。

、初始化

在d维搜索空间(即问题的维度)中创建n个个体的初始种群矩阵(即种群大小)。其中,每个风暴、雷暴和龙卷风的位置表示优化问题的候选解。

其中rand是在[0,1]范围内生成的任意数,yij是第j个个体在第j个维度上的起始值,uj和lj分别代表搜索空间的上限和下限。

二、风暴演变

龙卷风和雷暴的指定风暴是用下列数学公式计算的:

其中k = 1,2,3,…、nto和fk指与龙卷风相关的KTH雷暴的成本。

式中,⌊·表示舍入算子,k = 1,2,…nwk是演变或分配为特定雷暴或龙卷风的风暴的数量。

三、风暴速度与科里奥利力

对于不需要风暴直线运动的大尺度大气湍流,科里奥利力、离心力和压力梯度力之间存在三方平衡。由此,形成雷暴和龙卷风的梯度暴风速度可识别如式30所示:

(一)从风暴到龙卷风的演变

当风暴或雷暴演变成龙卷风或雷暴时,龙卷风或龙卷风就形成了。这一演化过程可以用数学方法模拟,如式46所示:

(二)风暴到雷暴的演变

有n个个体,其中nt被选为雷暴,没有被选为龙卷风。在这项工作中,我们假设只有一个龙卷风。下图是一场风暴沿其接触线演变成一场特定雷暴的示意图。风暴与雷暴之间的距离γ可以随机修正,如式50所示。

四、雷暴到龙卷风的演变

在所提出的优化算法的探索和利用阶段,雷暴在演变成龙卷风过程中的新位置可以按照如下定义的方式进行模拟:

五、随机形成的风暴

风暴的随机形成使TOC避免陷入局部解和不成熟辐合。

基本上,当风暴演变成雷暴或演变成龙卷风时,它们会在随机的位置演变,从而在不同的位置形成成熟的龙卷风。这一过程适用于风暴和雷暴,必须检查它们是否足够接近龙卷风,以使这一过程发生。为此,可以利用以下数学公式来完成风暴形成龙卷风的随机过程:

算法伪代码

为了使大家更好地理解,这边给出作者算法的伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者在23个测试函数和CEC2017的29个基准函数集以及8个工程设计问题和1个工业过程的实际问题,验证了TOC优化器的可靠性和适用性,该算法在解决方案质量和全局最优性方面比其他竞争优化器表现出令人满意的性能。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和经23年新出的霜冰优化算法进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法在大部分函数上均优于霜冰优化算法,说明该算法性能还是比较不错的!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Braik M, Al-Hiary H, Alzoubi H, et al. Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems[J]. Artificial Intelligence Review, 2025, 58(4): 1-99.

完整代码

如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

TOC

也可点击下方小卡片,再后台回复个人需求(比如TOC-LightGBM)定制以下TOC算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、LightGBM、TCN、BiTCN、ESN、Transformer等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断、车间调度等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2025年的龙卷风优化算法ALA以及鱼鹰OOA、蛇鹫SBOA等任意优化算法均可,保证测试函数效果,一般可直接核心!

<think>好的,用户想了解龙卷风相关的TOC生成算法,特别是关于实现和自动生成目录的方法。首先,我需要确认用户提到的“TOC”具体指什么。在引用内容中,TOC代表“带科氏力的龙卷风优化算法”(Tornado Optimization Algorithm with Coriolis Force),而不是通常的“目录”(Table of Contents)。用户可能混淆了这两个概念,或者希望了解如何将优化算法应用到目录生成中。 接下来,我需要检查提供的引用内容。引用[2]和[3]详细描述了TOC算法,它是一种元启发式优化算法,模拟龙卷风的形成过程,用于解决全局优化问题。而用户提到的“自动生成目录”可能自然语言处理或文档处理相关,但现有引用中没有相关内容。因此,用户可能存在误解,需要澄清TOC算法的实际应用领域。 然后,我需要根据引用内容解释TOC算法的实现步骤,包括种群初始化、适应度评估、风速和位置更新等。同时,需要指出用户的问题中的混淆点,说明TOC算法主要用于优化问题,而非生成目录。如果用户确实需要目录生成方法,可能需要建议其他技术,如文本分析或机器学习模型。 最后,生成相关问题时,应围绕TOC算法原理、优化方法、其他算法的比较,以及可能的实际应用,帮助用户进一步了解该算法。</think>### 龙卷风优化算法TOC)的实现原理 根据引用内容,龙卷风优化算法TOC)是一种基于群体智能元启发式算法,其灵感来源于自然界中雷暴和风暴通过科氏力演变成龙卷风的过程[^2][^3]。该算法主要用于解决连续搜索空间中的全局优化问题和约束工程问题,而非直接用于生成目录(Table of Contents)。以下为其核心实现步骤: --- #### **1. 算法角色初始化** - **角色定义**: 算法包含三类个体: - **风暴(Windstorms)**:代表搜索空间中的初始解; - **雷暴(Thunderstorms)**:通过随机扰动生成新解; - **龙卷风(Tornadoes)**:当前最优解,具有更强的局部搜索能力。 - **初始化种群**: 在搜索空间内随机生成风暴、雷暴和龙卷风的初始位置[^3]。 --- #### **2. 适应度评估** - 计算每个个体(风暴、雷暴、龙卷风)的适应度值,即目标函数值,用于衡量解的优劣。 --- #### **3. 风速位置更新** - **科氏力作用**: 引用公式$D_{ij}^{c_{j}} = r_{j} \cdot (S_{ij}^{c} - S_{j}^{c}) \cdot [R_{i} > r_{j}]$[^4],其中$r_j$为随机数,$S$为位置参数,$R_i$为适应度相关的阈值。 这一公式模拟了科氏力对风暴移动方向的影响,推动个体向更优区域搜索。 - **位置更新**: 根据风速公式调整个体位置,平衡全局探索局部开发能力[^3]。 --- #### **4. 随机生成新风暴** - 在搜索空间中随机生成新风暴,避免算法陷入局部最优。 --- #### **5. 终止条件** - 当达到最大迭代次数或适应度值收敛时,算法终止。 --- ### **关于“自动生成目录”的澄清** 用户提到的“TOC生成算法”可能存在术语混淆: 1. **TOC算法本身用途**:专为优化问题设计,例如工程参数调优、函数极值搜索等。 2. **目录生成(Table of Contents)**:若需自动生成文档目录,需使用自然语言处理技术(如标题识别、层级分析),龙卷风优化算法无关。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值