原创未发表!25年最新龙卷风算法TOC优化VMD一键实现信号分解!六种适应度函数+超多图!附Matlab代码

声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

数据输入方法

模型流程

创新点

1.使用VMD的创新点在于:

2.使用龙卷风优化算法TOC创新点在于:

完整代码


今天给大家带来一期利用2025年最新的龙卷风优化算法TOC优化VMD的信号分解的代码,非常适合作为创新点。

相比于EMD分解时存在的模态混叠问题,VMD可以将信号分解成一系列有限带宽的固有模态函数,并且自适应地将信号不同频率有效分离,适用于非线性非平稳性信号,并且效率高。

然而,VMD的性能也会受到两个分解模态数K、惩罚因子α的重要影响,而手动调参较为繁琐,且不可靠。如果选择的K太小,可能无法捕获信号中的所有重要成分,导致信息丢失;选择较大的K,可能引入冗余信息,增加计算复杂度,同时可能使得模态之间的正交性和稳定性变差。而惩罚因子α如果选择过大,可能会导致模态过于平滑,造成欠拟合;而选择的α过小则可能导致模态过分灵活,产生过拟合现象。

因此,可以利用最新优化算法对其参数进行自适应选择!目前知网上用的人还很少!可以说是尚未发表的创新点!替换自己喜欢的优化算法也非常方便!

本期代码,一共集成了六种熵值供您选择,非常方便,并有了3D分解图、功率谱、幅值谱、希尔伯特谱、瞬时能量等图!一共9张图!

您只需做的工作:替换自己的数据,选择适应度函数,运行main文件即可!非常适合新手小白!

数据输入方法

在分解模型的输入时,一般只输入一列数据即可,比如信号、交通流、风速、声音、振动、功率、碳排放数据等等。

为了方便大家操作,这里使用Excel输入!以一列信号(时间序列)为例,展示数据输入格式。

大家在更换自己的数据时,只需替换这一列放想要分解的信号等等内容,无需更改代码,非常方便!如果你是mat格式等文件的话,可以复制数据到Excel中或者自行查找mat格式输入方法!

模型流程

以下这些内容,如果大家需要用这个程序写论文,都是可以直接借鉴参考的!

在应用VMD算法时,需人为指定分解模态数K、惩罚因子α两个参数,存在较大主观性和盲目性的不足。因此,采用25年最新龙卷风优化算法对TOC对VMD的两个参数进行优化,适应度函数可选择六种(包络熵、排列熵、信息熵、样本熵、能量熵、包络峭度因子,如果适应度值越小,则代表分解的效果越好。通过优化和更新,来确定最终的最佳参数。

优化的步骤如下:

(1)TOC算法的种群初始化,设置TOC的迭代次数和种群规模,并设置VMD算法的参数优化范围;

(2)优化算法进行迭代,计算各个 IMF 分量的适应度,以适应度的最小值进行评价。

(3)判断优化是否达到算法的终止条件,若是,则继续下一步;若否,则更新种群位置,并返回第(2)步;

(4)保存最优的VMD参数组合,并将其代入至VMD中;

(5)得到最佳的 IMF 分量,并生成VMD分解图、频谱图、参数变化图、相关系数等图片。

以上所有流程,作者都已精心整理过代码,都可以一键运行main直接出图!如果需要搭配后续的预测模型,比如TOC-VMD-Transformer,可以后台私信我,都是没有问题的!

创新点

1.使用VMD的创新点在于:

(1)VMD算法对模态的带宽进行了明确的数学定义,以希尔伯特变换得到模态的解析信号,再将其频谱通过指数搬移到原点,通过高斯滤波后的L2范数来衡量带宽,具有清晰的数学基础良好的可控性,不像EMD那样依赖经验和启发式处理。

(2)对噪声的鲁棒性较强,不容易受到局部尖峰、非平稳噪声的干扰,适合处理非平稳、非线性信号。

(3)所有模态在优化过程中是一起更新的,这样可以自适应地分配频率带宽,避免模态重叠,显著减小了模态混叠现象,提取的模态具有更好的物理意义。

2.使用龙卷风优化算法TOC创新点在于:

龙卷风优化算法TOC于2025年2月发表在SCITop期刊《Artificial Intelligence Review上!实验结果表明,TOC算法在大部分测试函数上均取得了最优结果!你先用,你就是创新!

之前推文有做过TOC和23年新出的的霜冰优化算法RIME的比较,效果显而易见!对比代码可以免费获取!链接如下:

2025年SCI顶刊新算法-龙卷风优化算法(TOC)-公式原理详解与性能测评 Matlab代码免费获取

结果展示

这里以一段480个点的数据为例,设置TOC算法的种群规模为10,迭代次数为20(可自行更改),结果如下:

并以包络熵为适应度函数为例:

2D分解结果图:

频谱图1:

频谱图2:

3D分解图:

迭代曲线图:

参数变化图:

希尔伯特谱+瞬时能量图:

命令行窗口也会清楚显示最佳参数以及适应度值:

文件夹内也非常清晰,没有什么乱七八糟的文件!您需要运行的文件只有main脚本一个!!

以上所有图片,替换Excel后均可一键运行main生成,Matlab无需配置环境!比Python什么方便多了!非常适合新手小白!

完整代码

如果需要以上完整代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

TOCVMD

<think>好的,用户想了解与龙卷风相关的TOC生成算法,特别是关于实现和自动生成目录的方法。首先,我需要确认用户提到的“TOC”具体指什么。在引用内容中,TOC代表“带科氏力的龙卷风优化算法”(Tornado Optimization Algorithm with Coriolis Force),而不是通常的“目录”(Table of Contents)。用户可能混淆了这两个概念,或者希望了解如何将优化算法应用到目录生成中。 接下来,我需要检查提供的引用内容。引用[2]和[3]详细描述了TOC算法,它是一种元启发式优化算法,模拟龙卷风的形成过程,用于解决全局优化问题。而用户提到的“自动生成目录”可能与自然语言处理或文档处理相关,但现有引用中没有相关内容。因此,用户可能存在误解,需要澄清TOC算法的实际应用领域。 然后,我需要根据引用内容解释TOC算法实现步骤,包括种群初始化、适应度评估、风速和位置更新等。同时,需要指出用户的问题中的混淆点,说明TOC算法主要用于优化问题,而非生成目录。如果用户确实需要目录生成方法,可能需要建议其他技术,如文本分析或机器学习模型。 最后,生成相关问题时,应围绕TOC算法的原理、优化方法、与其他算法的比较,以及可能的实际应用,帮助用户进一步了解该算法。</think>### 龙卷风优化算法TOC)的实现与原理 根据引用内容,龙卷风优化算法TOC)是一种基于群体智能的元启发式算法,其灵感来源于自然界中雷暴和风暴通过科氏力演变成龙卷风的过程[^2][^3]。该算法主要用于解决连续搜索空间中的全局优化问题和约束工程问题,而非直接用于生成目录(Table of Contents)。以下为其核心实现步骤: --- #### **1. 算法角色与初始化** - **角色定义**: 算法包含三类个体: - **风暴(Windstorms)**:代表搜索空间中的初始解; - **雷暴(Thunderstorms)**:通过随机扰动生成新解; - **龙卷风(Tornadoes)**:当前最优解,具有更强的局部搜索能力。 - **初始化种群**: 在搜索空间内随机生成风暴、雷暴和龙卷风的初始位置[^3]。 --- #### **2. 适应度评估** - 计算每个个体(风暴、雷暴、龙卷风)的适应度值,即目标函数值,用于衡量解的优劣。 --- #### **3. 风速与位置更新** - **科氏力作用**: 引用公式$D_{ij}^{c_{j}} = r_{j} \cdot (S_{ij}^{c} - S_{j}^{c}) \cdot [R_{i} > r_{j}]$[^4],其中$r_j$为随机数,$S$为位置参数,$R_i$为适应度相关的阈值。 这一公式模拟了科氏力对风暴移动方向的影响,推动个体向更优区域搜索。 - **位置更新**: 根据风速公式调整个体位置,平衡全局探索与局部开发能力[^3]。 --- #### **4. 随机生成新风暴** - 在搜索空间中随机生成新风暴,避免算法陷入局部最优。 --- #### **5. 终止条件** - 当达到最大迭代次数或适应度值收敛时,算法终止。 --- ### **关于“自动生成目录”的澄清** 用户提到的“TOC生成算法”可能存在术语混淆: 1. **TOC算法本身用途**:专为优化问题设计,例如工程参数调优、函数极值搜索等。 2. **目录生成(Table of Contents)**:若需自动生成文档目录,需使用自然语言处理技术(如标题识别、层级分析),与龙卷风优化算法无关。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值