随着知识经济时代的到来,知识逐渐成为企业在激烈的市场竞争中生存、发展和获得持续优势的主要资源。对于那些积聚了大量半结构化和非结构化数据的企业来说,想要“解封”自身难以估算的业务及产品知识,首先要做的就是建立知识库,在此基础上,才能够进行知识的有效整合和充分利用,使知识的价值被真正地释放。
然而,若是仅仅考虑构建一般的知识库并非就万事大吉了,因为只具备文档管理等简易功能的传统知识库注定将被淘汰,而当前市面上被冠之以“智能”之名的知识库质量又参差不齐,很多既不智能,也不触达真正的知识,更谈不上是兼收并蓄的“库”。那么一个理想的智能知识库应该是什么样的?或许我们公司合作的这家对于知识工程技术有着深入研究的AI 企业能够给出参考答案。
我是在国内的一家大型工程机械制造公司工作,主要负责维修我们公司自己的机械和设备。
作为一家传统企业,公司这些年也一直在计划着数字化转型,但中间一直存在着各种问题,就拿一直困扰我们的故障排除来说,机器一旦出现故障,就必须精确定位到出问题的零部配件,且要遵照完全不同的维修方法。与此相关的知识点成千上万,我们这些外勤维修人员不可能面面俱到,必须要依靠二线支持人员的援助。于是,公司数量有限的二线人员自然是倍感压力,面对我们这些上千名外勤工程师,面对大量互不相连的业务系统,常常是心有余而力不足。更糟糕的是,他们还会不可避免地遇到大量相似的问题,反复解答很浪费时间。
为了解决这一困扰,公司与竹间智能展开合作。凭借自研的AI综合能力平台,竹间智能为我们公司量身定制了一套解决方案。其中最为关键的一步,便是将繁杂的排故数据及信息疏浚整合,据此构建内容详实、架构合理、灵活易操作的智能知识库。
汇总FAQ以解决通用问答,打造知识图谱以搞定同质化问题,同时引入多轮对话引擎以应对复杂的交互任务,竹间为我们公司搭建的AI智能知识库可谓“滴水不漏”。排障助手机器人随之被创造出来。由于使用了分布式存储架构,且基于人工智能检索,竹间知识库可妥善处理数十亿的实体、数百亿的知识关联,且仍旧保持速度优势,实现毫秒级响应。
此外,竹间智能搭建的智能知识库支持二次开发,方便调整,能够实现本地文档的在线化及半结构化,可经由自动或手动的方式,轻松自如地添加及修改知识。基于竹间智能AI平台的满意度、负反馈等独特机制,还能够将平时工程师向机器人咨询的问题反馈给知识库,形成自学习的良性循环。
基于竹间智能的智能知识库的排障助手上线仅一年时间,便可妥善覆盖公司机械设备80%以上的故障相关问题,降低了50%左右的通讯成本和服务时间成本,二线服务人员能够很轻松地为我们外勤人员送上强力的支援,效率增幅高达50%以上,降本增效的成果非常显著。
什么才是理想的智能知识库?我想大概就是像竹间智能知识库这样的吧。它能够贯穿于知识生成、加工、沉淀、组织、管理、流动、优化的全周期,受AI赋能,通过知识提取、分析、聚集、运用、共享等一系列动态过程,让知识的价值最大化,从而驱动多姿多彩的智能化应用。