如何基于多模态数据进行抑郁症检测?

本文参考

  • 基于多模态深度卷积神经网络的抑郁症检测研究 作者:刘东东
  • 基于脑电信号的抑郁症检测方法研究 作者:宋鑫旺
  • 基于肢体动作的抑郁症识别研究 作者:赵晓轩
  • 基于智能步态分析的抑郁人群识别 作者:许世豪
  • 利用深度学习从面部表情和语音识别抑郁症方法的研究 作者:郭威彤
1. 抑郁症患者的特征
语调特征
  • 音量较低:抑郁症患者的语调明显更低,与正常人相比有显著差异。说话时的音量普遍较低,声音显得较为微弱。即使在安静的环境中,也需要仔细聆听才能听清楚他们的话语。这种低音量的说话方式可能与他们内心的低落情绪和缺乏自信有关。
  • 语言表达单一:语言表达的内容较为单一,缺乏丰富的词汇和生动的描述。在叙述事件或感受时,常常使用简单的词汇和句式,难以详细地描绘细节和情感变化。例如,在描述一个愉快的场景时,可能只是简单地说“还不错”“还可以”,而无法像正常人那样详细地描述场景中的各种元素和自己的感受。
  • 语速变慢:说话的速度明显变慢,每个字、词、句的发音和停顿时间都相对较长。在回答问题或表达观点时,往往需要更长的时间来组织语言,且在说话过程中会出现较多的停顿。
面部表情
  • 表情较少:面部表情较少,情绪变化不明显,表情丰富度较低,并且往往较为僵硬,缺乏自然流畅的过渡。例如,在微笑时,嘴角上扬的幅度可能较小,且持续时间较短,难以展现出真正愉悦时的自然笑容。通常有与悲伤相关的特征,例如嘴角下拉、眉头紧皱、皱纹加深、眼睛经常哭得红肿。
  • 眉毛活动范围小:眉毛的活动范围相对较小,较少出现因情绪变化而产生的明显眉形变化。如在表达惊讶或好奇时,眉毛上扬的幅度不如正常人显著;在表示愤怒或不满时,眉毛皱起的程度也较轻。
  • 眼神呆滞:他们的眼神通常较为呆滞,与他人交流时眼神交流频率降低。即使在对话过程中,也常常避免与对方进行直接的眼神接触,或者眼神游离不定,无
### 多模态抑郁症检测代码实现 对于多模态抑郁症检测的任务,通常涉及多种数据源的融合处理,比如文本、音频以及视频等。这些不同类型的输入能够提供更全面的信息来辅助诊断模型的学习过程。 下面是一个基于Python框架PyTorch构建的基础版本多模态抑郁情绪分析网络结构实例: ```python import torch from torch import nn class MultiModalDepressionDetectionModel(nn.Module): def __init__(self, text_input_size=768, audio_input_size=128, video_input_size=(224, 224), num_classes=2): super(MultiModalDepressionDetectionModel, self).__init__() # 文本特征提取器 (BERT预训练模型作为例子) from transformers import BertModel self.text_extractor = BertModel.from_pretrained('bert-base-uncased') self.fc_text = nn.Linear(text_input_size, 50) # 音频特征提取器 (LSTM层为例) self.audio_lstm = nn.LSTM(input_size=audio_input_size, hidden_size=32, batch_first=True) self.fc_audio = nn.Linear(32 * 2, 50) # 视觉特征提取器 (ResNet架构为例) from torchvision.models import resnet18 self.video_extractor = resnet18(pretrained=True) self.fc_video = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(video_input_size[-1], 50), ) # 融合模块 self.fusion_layer = nn.Linear(in_features=150, out_features=num_classes) def forward(self, texts=None, audios=None, videos=None): outputs = [] if texts is not None: txt_out = self.text_extractor(**texts).last_hidden_state[:, 0, :] txt_out = self.fc_text(txt_out) outputs.append(txt_out) if audios is not None: _, (hid_aud,) = self.audio_lstm(audios) hid_aud = hid_aud.view(-1, 64) aud_out = self.fc_audio(hid_aud) outputs.append(aud_out) if videos is not None: vid_out = self.video_extractor(videos) vid_out = self.fc_video(vid_out.unsqueeze(dim=-1)) outputs.append(vid_out) fused_output = sum(outputs)/len(outputs) if len(outputs)>0 else torch.zeros_like(outputs[0]) logits = self.fusion_layer(fused_output) return logits ``` 上述代码定义了一个简单的多模态抑郁症预测模型类`MultiModalDepressionDetectionModel`[^1]。该模型接收三种不同类型的数据——文字描述(`text`)、语音片段(`audios`)和面部表情图像序列(`videos`),并通过各自的编码器分别获取每种模式下的表示向量;最后通过加权平均的方式将它们组合起来送入分类头完成最终的情绪状态判断任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值