基于多模态脑连接体的晚年抑郁症患者自杀风险预测

自杀意念、自杀计划和自杀行为在老年人群中是非常严重的健康问题,其导致死亡的可能性远远高于任何其他年龄组。老年抑郁症发病率的增加反映了对老年抑郁症患者自杀风险进行有效筛查的迫切需要。采用横断面设计(注:或者叫横向研究,定义是在单一时间点比较不同的群体,不考虑过去和未来的影响,只看某个时间点的结果),我们使用全脑静息态功能连接和白质结构连接数据进行了基于连接体的预测建模,以预测晚年抑郁症患者(N = 37例非自杀患者,N = 24例有自杀意念/计划的患者,N = 30例自杀未遂患者)的自杀风险。自杀风险是通过三份标准化问卷来衡量的。通过使用机器学习,我们,可解释方差高达30.34%。与单独使用问卷评分相比,功能和结构连接特征提高了分类预测的准确性,并可用于在两个独立数据集中识别自杀风险较高的抑郁症患者。我们的研究结果表明,多模态大脑连接可以捕捉到晚年抑郁症患者自杀风险的个体差异。我们的预测模型可能会进一步测试,以帮助临床医生识别需要详细评估和干预的患者。本文发表在Nature mental health杂志。

介绍:

抑郁症以近20%的患病率影响老年人口,而且超过三分之一的晚年抑郁症 (LLD) 患者在治疗后无法完全缓解。抑郁症最致命的后果之一就是自杀。自杀意念、计划和行为是老年人口中特别严重的健康问题。自杀行为导致老年人口死亡的可能性高于任何其他年龄组。最近的证据表明,神经特征可用于区分有自杀倾向的个体和无自杀倾向的个体。另一方面,现有研究已反复确定一系列风险因素,包括先前的自杀意念或行为、情绪问题、金融危机、功能障碍和药物滥用。这些重要因素已包含在广泛使用的评估一般自杀倾向的问卷中,例如 Beck 自杀意念量表 (BSS) 和 SAD PERSONS 量表 (SPS)。研究已经使用这些问卷来衡量群体分类之外的自杀倾向的个体差异。自杀问卷得分可能反映情感和行为失调的维度变化。自杀倾向增加了抑郁症的异质性。此外,具有自杀倾向的个体群体中也可能存在相当大的异质性。到目前为止,还没有一个单一的因素被确定为预测自杀的充分和必要的因素。这可能是自杀触发因素的变化造成的,导致对病人的管理非常具有挑战性。因此,利用基于大脑的数据开发自杀风险程度和强度的生物学标记物,对于补充临床管理中的自杀风险评估具有很大的前景,最终可能有助于开发实用的和有针对性的自杀预防干预方案。虽然对患有LLD的自杀患者的研究很少,但研究已经确定,自杀患者在认知控制网络(如外侧前额叶皮层、眼窝前额叶皮层、顶叶上叶和小脑)以及在躯体感觉皮层(如中枢后回)中自发的神经活动发生了改变。有自杀行为的患者认知控制网络功能的改变可能与情绪失调密切相关。相比之下,体感皮层的变化可能与自残行为引起的身体感觉中与回忆相关的精神疼痛有关。认知控制网络区域,如前额叶和眼窝前额叶皮层,也在有自杀意念和行为的人群中表现出白质异常。总之,这些发现表明,功能性和结构脑成像特征可以用来识别自杀相关的神经标志物。

近年来,许多研究致力于利用大脑网络特征预测心理过程。静息态功能磁共振成像(rs-fMRI)和弥散张量成像(DTI)是两种在研究背景下始终表现出高测试-重测可靠性和通用性的技术。具体而言,rs-fMRI和DTI提供了补充指标,告知个体在无任务状态下的功能和结构网络连接情况。目前已经积累了使用电路级别的连接特征来识别离散抑郁症亚型的证据。尽管如此,只有少数报告是基于大脑预测自杀风险的持续个体差异,这对于研究个体认知和情感过程的差异以及临床人群行为特征的异质性至关重要。

在这项研究中,我们旨在使用基于连接体的预测模型(CPM)来预测LLD患者的自杀风险。CPM方法是一种鲁棒的、可推广的数据驱动方法,可以成功预测情绪、认知和行为失调的个体差异,具有较高的外部效度。我们已经验证了CPM在老年人大脑行为预测中的效用。我们假设认知控制神经网络可以通过几种自杀行为问卷来预测LLD患者的个体自杀风险评分。为了正式测试识别的结构和功能连接(FC)特征的预测强度,我们还采用了带有内部交叉验证的机器学习方法来推导神经模型的预测精度。

方法

参与者

表1 人口统计学和临床信息以及组间效应

对各变量进行单因素方差分析(F)、卡方检验(χ2)、非参数Kruskal-Wallis检验(H)和Bonferroni检验(双尾,未调整;Bonferroni检验用于校正事后分析的多重比较),因为这些测试仅用于描述目的。用药百分比是指服药组中患者的比例。MMSE,简易精神状态检查;HAMD,汉密尔顿抑郁评定量表;汉密尔顿焦虑评定量表。粗体条目表示组间有显著差异。

我们通过基于 DSM-5 的诊断访谈招募了 116 名老年人(60-79 岁),他们被两名获得委员会认证的老年精神病学家诊断为 MDD。患者是通过广告和公告从精神科住院或门诊服务中随机招募的,海报上有纳入和排除标准。进行了迷你国际神经精神病学访谈,以评估疾病和终生自杀史。还从病历审查、护理人员和患者的附带报告中收集了临床信息。我们在初步评估中排除了四名患有严重内科疾病的患者。与本样本相比,被排除的样本在人口统计信息或行为评分方面没有显示出任何显著差异(均P > 0.125),这表明我们的研究结果不太可能受到参与者选择偏差的影响。所有参与者均无双相情感障碍、精神病或物质使用障碍或任何重大身体或神经疾病的共病。然而,两名患者也被诊断为广泛性焦虑症。所有参与者在研究期间都在服用药物,并提供参与研究的书面知情同意书。

MMSE得分低、行为和大脑数据缺失以及头部运动过大的参与者被进一步排除。剩下的91名参与者被纳入以下分析(74名女性,平均年龄=66.39岁,均方差=5.45岁;17名男性,平均年龄=67.71岁,均方差=6.70岁)。没有使用统计方法来预先确定样本量,但我们的样本量与以前关于自杀的出版物中报道的样本量相似。我们使用 G*Power 3.1.9.7 进行了事后功效分析。对于使用预测值和观测值之间相关性的 CPM 分析,我们发现样本量 N = 91 和相关系数 0.3 可以达到 0.83 的统计功效,样本量 N = 92 和相关性 0.4 可以达到统计功效为 0.98。我们的样本大小 N = 91,从 CPM 模型获得的相关系数为 0.3 到 0.6,可以实现 0.83 到 0.98 的统计功效。对于组间分析,要实现 f = 0.4 的大效应量和 0.92 的功效,G*Power 估计的三组总样本量为 N = 90。

其余LLD(晚年抑郁症)患者根据在临床访谈中收集的自杀相关信息被分为三组。从未想过自杀或企图自杀的患者属于NS组(N = 37)。在一生中曾认真考虑过自杀和/或计划自杀但没有自杀企图史的患者属于IP组(N = 24)。在一生中曾企图自杀的患者属于SA组(N = 30)。根据HAMD-17第3项的得分,我们进一步将IP组的患者分为两个亚组,评估患者在过去一周内是否有自杀的想法/计划或企图。第3项得分为1分或1分以上的患者被认为有当前自杀的想法。有10例患者当前和过去都有想法(CPI组),14例患者只有过去有想法(PI组)。分组不是随机的,因为这些患者没有被分配到任何实验条件下。SA 组得分大于 0,平均有 2.4 次自杀未遂(范围从 1 到 6)。他们第一次尝试的平均年龄为 51.67 岁,均方差为 11.91。SA 组自杀相关信息的详细信息可在补充表 23 中找到。为了检查人口统计、临床和行为变量中的组间效应,我们使用了SPSS进行了单向方差分析、卡方检验、非参数 Kruskal–Wallis测试和 Bonferroni 测试。统计显着性设定为 P < 0.05(双尾)。

自杀风险问卷

我们使用了三份问卷来评估参与者的自杀风险水平。中文版BSS用于量化患者前一周的自杀态度、行为和计划的当前强度。使用中文版 SPS 评估参与者的自杀风险因素,以估计患者过去 6 个月的自杀风险水平。使用 TSII 是为了检测过去 12 个月老年人自杀意念的诱因。调查问卷回顾性地评估了过去 12 个月内的自杀风险,同时通过询问患者一生中是否有自杀意念或企图来收集自杀史。

MRI 数据采集和连接矩阵构建

我们使用带有八通道头部线圈的 3T MRI 扫描仪(Discovery MR750,GE Healthcare)获取 MRI 数据。参与者在清醒闭目时获取静息态 fMRI 图像。使用以下参数在 6 分钟内总共采集了 180 个volume:重复时间 TR = 2,000 ms,回波时间 TE = 30 ms,翻转角 = 90°,可见野 (FOV) = 220 × 220 mm2,体素大小 = 3.44 × 3.44 × 4 mm3。使用以下参数获取160张经自旋晶格弛豫时间(T1)加权的高分辨率结构图像矢状切片: TR = 8.2 ms, TE = 3.2 ms,翻转角度= 12°,FOV = 250 × 250 mm2,体素大小= 0.98 × 0.98 × 1 mm3。使用以下参数获取32个扩散梯度方向(b = 1000)的DTI数据,其中有两个非扩散加权(b = 0)参考: TR = 7500 ms, TE = 82.6 ms,翻转角度= 90°,FOV = 220 × 220 mm2,体素大小= 1.7 × 1.7 × 2.2 mm3。

rs-fMRI数据使用SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/)和DPABI 3.1 进行预处理,程序如下: (1)删除前5个volume;(2)切片时间校正;(3)头部运动校正;(4)协变量(Friston 24个运动参数、白质、脑脊液信号和全局信号)回归,平均FD为> 0.5 mm。这些volume之前的volume和后面的两个volume都作为协变量相加。然后,我们进行(5)空间平滑,使用了6毫米半高全宽高斯核,(6)带通时间滤波使用0.01-0.1 Hz带宽。进行全局信号回归以加强FC与行为变量之间的关联。根据Kruskal-Wallis检验,三组在平均FD (P = 0.59)或回归扫描次数(P = 0.55)上无显著差异。所有参与者中,FD大于0.5毫米的volume个数小于20%。使用Shen 268节点脑功能图谱定义脑FC节点,包括皮层、皮层下区域和小脑。选择Shen 268节点图集,因为它在以前的CPM研究中被普遍采用。对于每个参与者,我们通过平均该节点中所有体素的时间序列来计算每个节点的平均时间序列。然后,我们使用Pearson相关对每对节点的平均时间序列进行相关,并对相关系数应用Fisher的r-to-z变换,为每个参与者构建一个268 × 268矩阵,用于预测分析。

使用FMRIB的扩散工具箱(FSL6.0;http://www.fmrib.ox.ac.uk/fsl).)对每个参与者的弥散成像图像进行涡流失真和头部运动校正。一名受试者(来自IP组)因DTI扫描不完整而被排除,剩下90名受试者进行SC分析。使用Diffusion Toolkit 0.6.4(http://trackvis.org/)用线性最小二乘法拟合每个体素来估计扩散张量模型。全脑纤维跟踪是在原生 DTI 空间中进行的,通过 TrackVis 0.6.1 (http://trackvis.org/) 中的连续跟踪算法进行纤维分配。如果分数各向异性小于 0.15 或两条路径之间的角度大于 35°,则纤维跟踪终止,如先前研究中所采用的那样。脑 SC 节点是使用 AAL-116 定义的,之前已经应用过。我们计算了参与者特定 DTI 图集的任意两个区域之间边的流线数作为该参与者的SC,从而为每个参与者生成一个 116 × 116 的连接矩阵。我们进一步对矩阵应用了 50% 的组阈值,以去除假阳性和阴性连接。该阈值是根据 de Reus 和 van den Heuvel 的工作选择的,该工作表明假阳性和阴性的数量估计在大约 54% 的组阈值时相等。这个阈值也被其他研究采用。为了进一步探讨不同组阈值的选择是否影响我们的发现,我们使用其他三个阈值(15%、25% 和 75%)重新运行预测分析。结果表明,预测性能基本保持不变(补充表 24),这表明阈值选择并未对我们的结果产生实质性影响。

大脑行为预测分析

为了使用 FC 和 SC 预测自杀风险,我们采用了使用LOOCV的CPM方法,并在 MATLAB 中进行了分析(MathWorks,2017b)。LOOCV 用于确保训练过程中包含足够的样本,因为我们的每组样本量相对较小,代表 LLD 患者的不同自杀特征。在这里,我们简要总结了每种模式的 CPM 处理流程(图 1)。对于 n-1 名参与者的每个训练集,FC 和 SC 特征使用 Spearman 相关性与真实行为分数相关联,控制性别、年龄和教育。三个行为分数都不遵循正态分布(Kolmogorov-Smirnov 检验,P < 0.05),因此我们使用了 Spearman 的偏相关。年龄和性别与 BSS 分数显著相关(|ρ| > 0.23,P < 0.025),教育与 SPS 分数相关(ρ = 0.21,P = 0.047)。为了保持一致性,我们在所有 CPM 分析中控制了三个变量。然后,我们通过提取与最佳 Pthreshold + 的行为正相关的特征作为正网络,以及与最佳 Pthreshold - 的行为负相关的特征作为负网络(参见扩展数据图 5)以获得最佳 P 阈值。为了最大限度地提高预测精度,我们通过对每个模型测试从0.0001到0.05的P值范围来获得最佳P阈值。为了评估预测性能,我们计算了真实值与预测值之间的斯皮尔曼相关(ρtrue)和R2。为了测试预测模型的显著性,我们随机化了真实分数,并进行了5000次相同的CPM分析。Ppermu值的计算公式为:(sum(ρnew > ρtrue) + 1)/5001,其中ρnew包含新生成的相关系数。

头动控制

为了探索头部运动对 CPM 模型的潜在混淆,我们首先测试了平均 FD 与行为之间的相关性。平均 FD 与任何行为变量都不相关(所有 |ρ| < 0.16,所有 P > 0.13)。此外,我们在边选择过程中使用平均 FD、年龄、性别和教育作为协变量对静息态 FC 进行 CPM 分析。在控制平均 FD 后,大多数结果基本保持不变(补充表 4)。FD 控制模型中选择的边与原始模型中的边有相当大的重叠(从 77.42% 到 100%)。然而,正网络(即 FC 边与行为正相关)并不能预测 BSS 分数(R2 从 8.08% 下降到 0.06%)。我们还评估了静息态 FC 产生的预测值是否与平均 FD 相关。结果显示,从正网络生成的预测 BSS 值与平均 FD 显著相关(ρ = 0.24,P = 0.02),而其他预测值与平均 FD 无关(所有 |ρ| < 0.15,所有 P > 0.16 )。这些结果表明,平均 FD 不会显著影响我们的大部分结果,但可能会影响正网络的 BSS 预测。因此,在后续的分析中,我们没有考虑BSS的正向网络CPM模型。我们还在预处理的 fMRI 数据上应用了volume审查,以最大限度地减少 BOLD 信号中运动引起的变化。与我们原始分析中的结果相比,从检查之后的 fMRI 数据中获得的 CPM 结果基本保持不变,其详细信息可在补充材料中找到。

连接特征提取

为了构建每个参与者的 FC 和 SC 特征网络,我们提取并总结了出现在所有交叉验证的重要 CPM 模型中的正向和负向网络的边,表示为连接特征的网络强度。基于使用 Kolmogorov-Smirnov 检验的正态性检验,我们进一步探讨了在 SPSS v.26 中使用单向方差分析和非参数 Kruskal-Wallis 检验的组间网络强度是否存在差异。对测试次数进行了错误发现率校正。我们还使用将这些变量添加为协变量的线性回归模型探讨了结果是否受到参与者的人口统计和临床特征的影响。我们进一步探讨了连接特征是否与 SA 组中的自杀未遂次数相关联。结果表明,BSS 的负面 FC 网络特征与自杀未遂次数显著相关(ρ = -0.49,P = 0.01),而其他则不相关(所有 P > 0.07)。这一发现表明 BSS 的负 FC 特征可能提供有关 LLD 患者自杀未遂频率的潜在信息。为了研究不同的节点如何影响这些连接特征,我们确定了与其他节点有三个或更多连接的大脑节点。由于功能和结构图谱不同,我们使用 BA 标签标记每个图谱中的大脑节点以跨模式进行推断。我们通过将每个 BA 区域在正网络或负网络中的边总数相加,然后将总和除以图集(Shen-268 或 AAL-116)中 BA 区域的节点总数来获得节点度,以控制一个图集中不同数量的节点。比如Shen-268图集中有8个节点属于BA11。在预测 BSS 分数的 FC 负网络中,我们提取了 BA11 的七个边(BA11 区域之间以及 BA11 与其他区域之间的连接)。节点度计算为 7/8 = 0.88(补充表 36)。

SVM分类

我们使用 Python 3.6.2 中的 scikit-learn 0.32.2 包,使用线性 SVM 来检查自杀风险的 FC 和 SC 特征在对 SA、IP 或 NS 组进行分类时是否增加了预测值(图 1)。支持向量机是一种鲁棒的分类方法,广泛且成功地用于预测神经和精神疾病,并证明了比许多其他分类器更高的准确性。对于模型参数,我们采用线性支持向量分类函数中的默认设置(penalty = 'l2', tol = 0.0001, C = 1.0)。与CPM分析类似,我们采用了LOOCV内部验证程序。人口统计学和临床变量、问卷评分和大脑特征(FC和/或SC)被逐步添加到SVM模型中作为训练特征(模型A到G,补充材料)。使用平衡的准确性、敏感性和特异性评估模型性能,通过对特征随机分配组标签5000次,使用非参数检验检验模型的显著性。

外部验证分析

为了测试CPM模型的可泛化性,我们在两个独立的数据集中验证了模型。数据集1来自Zhang等人,包括44例中年MDD患者的rs-fMRI和DTI数据(女性26例,平均年龄30.12岁,均方差8.10,均为中国人;男性18名,平均年龄31.06岁,均方差9.91)。数据集2来自Shao等人,包括24例中年MDD患者的数据(19例女性,平均年龄= 51.16岁,均方差= 5.30,均为中国人;男性5名,平均年龄52.20岁,均方差5.19)。两个数据集的参与者均提供了书面知情同意。有关参与者的人口统计资料载于补充表25。两个数据集中的患者根据HAMD-17中第3项的得分被分为三组(SA、IP和NS),该项询问患者是否有自杀意念/计划或企图。0分被认为是NS。1到3分被认为是IP。4分被认为是SA。数据预处理和连接矩阵构建与我们自己样本中使用的方法和参数相同。数据集2的扫描仪和扫描参数与我们的样本相同,而数据集1的扫描仪和扫描参数与我们的样本不同。数据集1的成像数据是在带有八通道头部线圈的3T MRI扫描仪(Achieva x系列,飞利浦医疗系统)上获取的,使用以下参数:rs-fMRI图像在8 min内获得240个volume,TR = 2000 ms, TE = 30 ms,翻转角度= 90°,FOV = 220 × 220 mm2,体素大小= 3.44 × 3.44 × 4 mm3。对于T1加权结构图像,共获得188张矢状切片,TR = 8.2 ms, TE = 3.7 ms,翻转角度= 7°,FOV = 256 × 256 mm2,体素大小= 1 × 1 × 1 mm3。在32个扩散梯度方向(b = 1000)采集DTI图像,其中一个非扩散加权(b = 0)参考点,TR = 10100 ms, TE = 90 ms,翻转角度= 90°,FOV = 256 × 256 mm2,体素大小= 2 × 2 × 2 mm3。然后,我们根据样本的CPM模型从两个数据集中提取FC和SC特征,并进行SVM分析,将两个数据集中的三个组分别分类(详见补充资料)。

药物作用

为了探索药物对我们神经研究结果的潜在影响,我们建立了CPM模型来预测药物类型的数量和药物负荷。我们发现几乎所有与自杀风险相关的连接特征都与药物相关的特征不重叠(重叠百分比约为0%),除了BSS的负FC特征重叠百分比为13.33%(补充表6)。这些结果可能表明,与药物相关的连接与自杀风险相关的连接在很大程度上不同,这进一步表明,我们的神经研究结果不太可能被患者服用的药物所混淆。

当前和过去的自杀意念在分类模型中的影响

考虑到IP组包括CPI和PI患者,我们测试了每个模型在从SA组和NS组中区分CPI时的预测性能以及从SA组和NS组中区分PI时的预测性能。根据HAMD-17第3项的得分,我们将IP组的患者分为两个亚组,评估患者在前一周是否有自杀意念/计划或企图。第3项得分为1分或1分以上的患者被认为有当前自杀意念。CPI组10例,PI组14例。这两组在大多数行为变量和大脑特征上没有显著差异,但在性别比例上有显著差异,CPI组的HAMD和TSII得分明显高于PI组(补充表13)。SVM分析表明,模型在SA与CPI(模型G: 78.33%)、PI与CPI(模型F: 78.46%)、CPI与NS(模型B: 77.3%)、PI与NS(模型G: 85.76%)的区分准确率较高,但在SA与PI(模型B: 64.74%)的区分准确率不高。这些结果(补充表14)可能表明,只有过意念的患者与有自杀企图的患者具有相似的特征,或者我们的预测因子不够敏感,无法识别这两组患者。未来的研究可能会检查大脑的特征,这对分类SA和PI是有用的。

重复的发现仅来自女性患者

鉴于我们的样本主要是女性患者,SA组和NS组的性别比例存在显著差异(χ²= 8.97,P = 0.003),我们仅使用女性患者进行了几项分析,以探讨性别失衡对我们主要发现的潜在影响。首先,我们只使用女性患者重新进行原来的SVM分析。结果显示,三组均保持了较高的准确度(补充表19)。SA/NS分类的最高准确率为92.83%,SA/IP分类的最高准确率为78.22%,IP/NS分类的最高准确率为81.47%(所有的Ppermu<0.001)。由于外部数据集2的性别分布也不平衡(尽管IP组和NS组之间的性别比不显著,P=0.86),我们仅使用数据集2中的女性患者重新进行外部验证分析。分类准确率较高(准确率90%,敏感度100%,特异度80%,Ppermu均<0.033)。这些结果表明,我们最初的分类成功不太可能是由于组间性别比例的差异。其次,我们只对女性患者(N=74)进行了内部CPM和支持向量机分析,并在外部数据集1和2中验证了CPM模型。CPM分析(扩展数据图2)显示,FC可以显著预测BSS评分(正向网络,R2=5.04%,Ppermu=0.01;负向网络,R2=6.02%,Ppermu=0.02)和SPS评分(正向网络,R2=17.30%,Ppermu=0.01)。只有在用负向网络预测SPS(正网络R2=12.49%,Ppermu=0.06),或者用正、负性网络预测TSII(正向网络R2=5.86%,Ppermu=0.15;负向网络R2=12.85%,Ppermu=0.08)时有统计学意义。SC可显著预测BSS评分(正向网络,R2 = 5.35%, Ppermu = 0.03)和SPS评分(正向网络,R2 = 12.46%, Ppermu = 0.01),但不能预测TSII评分(R2≤4.17%,Ppermu≥0.23)。没有一个显著模型受到头部运动的显著影响,因为在添加平均FD作为协变量后,模型仍然能有效地保持不变(补充表20),并且没有一个预测值与平均FD相关(均P > 0.07)。仅女性CPM模型的脑节点与从整个样本中获得的脑节点在很大程度上重叠(扩展数据图3;补充表21)。

然后,我们探讨了从仅女性的CPM模型中获得的FC和SC特征在对SA、IP和NS组(所有女性LLD患者)进行分类时是否具有预测价值。由于TSII模型均不显著,因此本问卷未纳入所有SVM模型。分类结果见扩展数据图4和补充表22。与我们最初的发现类似,具有FC或SC特征的模型在SA/NS(准确度90.83%,Ppermu < 0.001)和IP/NS(准确度81.47%,Ppermu < 0.001)分类方面比其他模型表现更好。然而,对于SA/IP分类,没有一个模型达到较高的准确率(最高准确率65.97%,Ppermu < 0.001)。我们进一步在两个独立的数据集中验证了仅女性的CPM模型。在数据集1中,SA/NS分类的最高准确率为100.00% (Ppermu < 0.001), SA/ IP分类的最高准确率为72.25% (Ppermu = 0.1426), IP/NS分类的最高准确率为81.25% (Ppermu = 0.0706)。在数据集2中,IP/NS分类的最高准确率为92.31% (Ppermu < 0.001)。这些结果表明,我们仅使用女性患者的主要分析在很大程度上重复了我们从整个样本中获得的原始结果。

扩展数据图1. 使用整个样本,从不显著的CPM模型中得出的不同行为测量的功能连接(A)和结构连接(B)曲线。这些边是出现在所有迭代中的共同边。

扩展数据图2. 女性患者的CPM预测结果。

(A)所有CPM模型的决定系数。计算了所有CPM模型的预测得分与真实得分之间的决定系数。用置换预测值(5000次)等于或大于真实预测值(单尾)的百分比来决定显著性。CPM模型是假设驱动的,结果没有调整。

(B)校正头部运动后的CPM预测结果显著。数值是为了可视化而标准化的。

BSS: 贝克自杀意念量表;SPS: SAD人群量表;TSII:自杀意念量表的触发因素研究FC:功能连接; SC:结构连接。NS:非自杀组; IP:想法/计划组;SA:自杀未遂组。“*”表示功能连接或结构连接显著预测所观察到的行为得分。* p < 0.05。

扩展数据图3. 从使用女性患者的CPM模型中得出的不同行为测量特征的功能连接(A)和结构连接(B)。

这些边是在所有迭代中出现的公共边。Shen的268个节点显示在10个宏观尺度区域,AAL-116显示在7个宏观尺度区域。连接性数据是使用ggraph (https://cran.r-project.org/web/packages/ ggraph/index.html)生成的。BBS: 贝克自杀意念量表;SPS: SAD人群量表;自杀意念量表的触发因素。

扩展数据图4. 支持向量机(SVM)对女性患者的分类结果。

NS:非自杀组; IP:想法/计划组; SA:自杀未遂组。

模型A的训练特征:年龄、性别、学历、LLD发病时间点、LLD发作时间段、LLD持续时间;

模型B: BSS、SPS和TSII得分;

模型C: TSII的功能性正网络强度和BSS、SPS、TSII的负网络强度,BSS、SPS的结构性正网络强度;

模式D:问卷调查+ FC概况;

模型E:问卷调查+ SC概况;

模型F:问卷调查+ FC + SC;模型G:所有特征。

星号表示性能最高。

扩展数据图5. 对p值范围(从0.0001到0.05,区间为0.0001)的CPM预测的斯皮尔曼系数。

计算真实值和预测值之间的斯皮尔曼相关性(双尾,未经调整)。该分析使用一个p值范围来选择性能最佳的模型,并使用选定p值的选择模型进行最终的CPM分析。因此,这些p值并非未经调整。对于功能连接正网络,BSS、SPS和TSII的最佳p阈值分别为0.0013、0.0001、0.0013;对于负网络,BSS、SPS和TSII的最佳p阈值分别为0.0057、0.0014、0.0004。对于结构连接正网络,BSS、SPS和TSII的最佳p阈值分别为0.0069、0.0067、0.0179;对于负网络,BSS、SPS和TSII的最佳p阈值分别为0.0441、0.0067、0.0373。BSS: 贝克自杀意念量表;SPS: SAD人群量表;自杀意念量表的触发因素。Y轴表示预测分数与观察到的行为分数之间的斯皮尔曼系数。X轴表示不同的p值。

结果

大脑行为预测

为了开发预测自杀风险史的 CPM 模型,我们获取了评估自杀风险的 91 名 LLD 患者(女性/男性 74/17;平均年龄 66.64 ± 5.69 岁)的脑成像数据和行为变量。LLD患者进一步分为三组。一生中从未想过或企图自杀的患者属于非自杀 (NS) 组 (N = 37)。曾认真考虑过自杀尝试和/或一生中计划自杀但没有自杀未遂史的患者属于想法/计划 (IP) 组 (N = 24)。一生中曾试图自杀的患者属于自杀未遂 (SA) 组 (N = 30)。三组的人口统计学和临床资料及组间比较结果见表1。自杀风险评估采用三份问卷,包括中文版BSS(评估患者自杀态度、行为和前一周计划的强度)、中文版SPS(评估患者过去6个月自杀风险水平)和自杀意念触发量表(TSII)(评估老年人过去12个月自杀意念触发因素)。

对于每个参与者,我们使用Shen 268节点功能脑图谱(注:该图谱涵盖了皮层、皮层下及小脑脑区)从rs-fMRI数据中生成了静息态FC矩阵和使用自动解剖标记(AAL-116)图谱从DTI数据生成了结构连接(SC)矩阵。然后,我们采用了使用留一交叉验证(LOOCV)的CPM方法。连边(大脑区域之间的连接)与自杀风险呈正相关或负相关,并通过预定义的P值(扩展数据图5),分别提取为正网络或负网络。CPM处理流程如图1所示。结果显示FC对BSS有显著的预测作用(正网络,决定系数R2 = 8.08%,Ppermu = 0.02;负网络,R2 = 5.11%, Ppermu = 0.03)、SPS(负网络,R2 = 30.34%, Ppermu < 0.001)、TSII(正网络,R2 = 16.05%, Ppermu = 0.01;负网络,R2 = 10.50%, Ppermu = 0.05)(图2)。SC对BSS(正网络,R2 = 6.96%, Ppermu = 0.01)和SPS(正网络,R2 = 14.37%, Ppermu = 0.01)有显著预测作用,但对TSII(均R2 ≤ 3.97%,Ppermu ≥ 0.14)无显著预测作用。每次迭代选择的边数和最终的连接特征如补充材料中的表1和2所示。考虑到两名LLD患者同时患有广泛性焦虑障碍(GAD),我们将这两名患者排除在外,重新进行CPM分析,发现结果基本保持不变(补充表3)。在控制头部运动后,FC正向网络不能显著预测BSS,而其他结果不受影响。因此,在接下来的分析中,我们没有考虑FC正网络。

FC和SC的特征矩阵

为了给每个参与者构建FC和SC特征,我们提取并汇总了出现在所有交叉验证的重要CPM模型中的正网络和负网络的连边,表示为特征网络的强度。我们使用布罗德曼区(BA)标签标记每个图谱中的大脑节点,用于对FC和SC的发现进行推论。显著性(FC,预测BSS、SPS和TSII的负网络;FC,正网络预测TSII;SC,预测BSS和SPS的正网络)和非显著性(FC,预测BSS和SPS的正网络;SC,预测BSS、SPS和TSII的负网络; SC,正网络预测TSII) CPM模型分别如图3和扩展数据图1所示。包括BA1和BA3(初级体感觉皮层),BA7(顶叶上叶),BA11(眼窝额区)和BA37(梭状回)在内的大脑区域对FC和SC模型都有贡献。在所有重要的CPM模型中均有小脑出现。此外,BA17(初级视觉皮层)、BA20(颞下回)和BA24(扣带回皮层)显示出高度的联系。这些大脑区域在很大程度上与之前研究中发现的区域一致(补充表36;详见补充资料)。我们进一步探讨了网络强度在组间是否存在差异。正如预期的那样,三组在FC和SC剖面的网络强度上表现出显著差异(图4)。

支持向量机(SVM)分类

为了检验FC和SC 特征在对SA、IP或NS组进行分类时是否改善了预测(图1),我们使用了线性支持向量机。人口统计学和临床变量、问卷评分和大脑特征(FC和/或SC)作为训练特征逐步添加到SVM模型中(模型A到G,见补充材料)。分类结果如图5和补充表7所示。一般来说,带有问卷分数和大脑特征的模型(模型D、E和F)比只有人口统计学和临床变量(模型A)、问卷分数(模型B)或大脑特征(模型C)的模型表现更好。问卷法和SC法SA/NS分类准确率最高,为90.63% (Ppermu < 0.001),问卷法和FC法SA/IP分类准确率最高,为78.62% (Ppermu < 0.001)。IP/NS组分类的最高准确率为82.37% (Ppermu < 0.001),这是使用所有特征的结果。在对SA/NS组、SA/IP组和IP/NS组进行分类时,使用问卷评分和大脑特征时,与仅使用问卷的模型相比,准确率分别提高了5.72%、8.19%和7.05%。尽管如此,只有问卷评分的模型B在SA/NS分类中仍然获得了较高的准确率,为84.91% (Ppermu < 0.001)。应该指出的是,总体分类精度的提高主要是由于SA/NS和SA/IP分类的特异性而不是敏感性的增加。此外,虽然采用了线性算法和交叉验证,但模型G包含了所有特征,由于训练特征数量较多(N = 15),可能存在过拟合问题。因此,应谨慎解释IP/ NS的最佳分类性能。

特征权重如补充表8所示。在权重绝对值的基础上,SPS及其连接特征的贡献大于其他两份问卷,而TSII的贡献最小。我们进行了另外两项分析,以探索这三份问卷及其特征如何有助于分组分类。首先,我们使用不同的问卷特征组合(BSS、SPS、TSII、BSS + SPS、BSS + TSII、SPS + TSII和BSS + SPS + TSII)来测试支持向量机的性能。结果(补充表9和10)显示,SPS对SA/NS和IP/NS的分类准确率最高,BSS对SA/IP的分类准确率最高。其次,我们测试了问卷相关特征的所有组合,并报告了达到最高精度的最佳模型。结果(补充表11和12)表明,在对三组进行分类时,TSII及其特征显示了其贡献,但其贡献没有其他两份问卷大。在对SA/NS进行分类时,三个模型中有两个不包括FC 特征。这些发现可能表明,评估最近自杀状况(6个月内)的问卷调查和SC特征在对不同自杀风险水平的人进行分类时可能更敏感。从三份问卷中得出的FC和SC 特征在对三组进行分类时起着不同的作用。SPS及其特征 (即FC的负网络和SC的正网络)的贡献大于其他两份问卷,而TSII的贡献最小。一些最优模型在对SA/NS进行分类时不包括FC 特征。在对IP/ NS进行分类时,结合FC和SC特征比使用单一模态有更好的性能。这些结果有两个含义。首先,如何使用不同的问卷和模式来提高分类的准确性是值得探索的。其次,集成多模态特征可以在分类IP/NS时提供有用的信息。我们还测试了仅使用FC和SC 特征的最佳分类性能。通过输入连接特征的所有组合来进行SVM分析,并报告达到最高精度的优化模型。结果表明,SA/NS分类的最高准确率为80.53%(Ppermu < 0.001),SA/IP分类的最高准确率为71.96%(Ppermu = 0.0040),IP/NS分类的最高准确率为67.45%(Ppermu = 0.0056)。所有连接特征 (BSS,负FC 特征和正SC 特征;SPS,负FC分布图和正SC分布图;TSII,正向和负向的FC特征)显示了在最佳模式的贡献。

外部验证结果

为了测试CPM模型的可泛化性,我们在两个独立的数据集中验证了模型。数据集1来自Zhang 等人,包括44例中年重度抑郁症(MDD)患者的rs-fMRI和DTI数据(女性/男性26/18;平均年龄30.50±8.78岁)。数据集2来自Shao等人,包括24名中年MDD患者的数据(女性/男性19/5;平均年龄51.38±5.17岁)。这两个数据集中的患者被分为三组(SA、IP和NS)。我们从两个数据集中提取连接特征,并进行支持向量机分析,将其分为三组(详细信息见补充材料)。SVM在两个独立数据集中的分类性能和特征系数如补充表15-18所示。在数据集1中,SA/NS的最高分类准确率为87.50% (Ppermu < 0.05), SA/IP的最高分类准确率为70.13% (Ppermu = 0.1520), IP/NS的最高分类准确率为73.75% (Ppermu = 0.1596)。在数据集2中,IP/NS的最高分类准确率为83.46% (Ppermu均< 0.01)。这些发现表明,我们的CPM模型可以在两个数据集中得到验证,尽管在数据集1中预测SA/IP和IP/NS时只有显著趋势。此外,所贡献的连接特征在很大程度上与我们的发现一致。鉴于我们的样本主要为女性患者,且SA组和NS组的性别比例存在显著差异,我们仅使用女性患者重复了我们的主要结果,结果见扩展数据图2-4。

图1. 数据分析流程图。

模型A的训练特征:年龄、性别、教育、LLD发作时间点、LLD发作段和LLD持续时间;

模型 B:BSS、SPS 和 TSII 分数;

模型C:TSII的功能正网络强度和BSS、SPS和TSII的负网络强度,BSS和SPS的结构正网络强度;

模型D:问卷+FC 特征;

模型E:问卷+SC 特征;

模型F:问卷+FC+SC;

G 型:所有特征。

图2. CPM预测结果。

a,各CPM模型的决定系数。计算了所有CPM模型的预测分数和真实分数之间的决定系数。使用排列预测值(5000次)等于或大于真实预测值(一尾)的百分比来决定显著性。CPM模型是假设驱动的,结果没有调整。星号表示FC或SC显著预测所观察到的行为评分。*** p < 0.001, * p < 0.05。

b,头部运动校正后CPM预测结果显著。数值是为了可视化而标准化的。数据表示为x和y之间预测的真值±95%置信区间。

图3. 从CPM模型中得到的不同行为测量的FC和SC特征。

a. FC; b. SC。这些边是在所有迭代中出现的公共边。Shen的268个节点显示在10个宏观尺度区域,AAL-116显示在7个宏观尺度区域。连接图是使用ggraph生成的。

图4. FC (n = 91个生物独立样本)和SC (n = 90个生物独立样本)网络强度的组间差异。

采用单因素方差分析和基于正态性检验的非参数Kruskal-Wallis检验,采用Kolmogorov-Smirnov检验(双尾)。进行错误发现率校正以校正多重比较。事后分析Bonferroni校正。在FC方面,BSS和SPS的负向网络分布组间差异显著(BSS, H(2) = 9.94, Pcorr = 0.016;SPS, H(2) = 31.38, Pcorr = 9.2 × 10−7),而TSII则没有(均P > 0.65,误发现率校正)。对于SC,只有SPS的正向网络剖面显示出显著的组间差异(SPS, H(2) = 9.65, Pcorr = 0.016)。随访分析发现,NS组的网络强度明显低于SA组(SPS, H = −19.07,Pcorr = 0.009)。在控制性别、年龄、教育程度、MMSE、HAMD/A、LLD发病时间、LLD发作次数、LLD持续时间、5种药物、药物类型数量、药物负荷或平均帧间位移(FD)(注:头部运动特征,即静息态fMRI时间序列中volume之间的位移)后,上述结果保持不变。此外,这些连接特征与年龄或药物负荷无显著相关性(补充表5)。对网络强度值进行标准化,以便于可视化。小提琴内盒子的下界和上界代表第一和第三个四分位数。须的长度表示不超过从边界到最大值(上须)或到最小值(下须)的四分位范围的1.5倍。

模型A的训练特征:年龄、性别、教育、LLD发作时间点、LLD发作时间段和LLD持续时间;

模型 B:BSS、SPS 和 TSII 分数;

模型C:TSII的功能正网络强度和BSS、SPS和TSII的负网络强度,BSS和SPS的结构正网络强度;

模型D:问卷+FC 特征;

模型E,问卷+SC 特征;

模型F,问卷+FC+SC;

模型G ,所有特征。星号*表示最佳性能。

讨论

通过使用多模态神经影像数据和完善的机器学习方法,我们证明了大脑连接特征可用于预测 LLD 异质人群自杀风险的严重程度。我们进一步证明了 FC 和 SC 特征的网络强度显示出组间差异的判别性,并提高了分类预测的准确性。CPM 模型被进一步推广以对外部数据集中具有不同自杀风险水平的群体进行分类。本研究应用基于连接组的模型来预测 LLD 患者的自杀风险强度,并评估连接组特征在解决分类预测问题方面的有效性。我们的研究结果表明,源自数据驱动的大脑连接可能提供有关 LLD 患者过去和当前自杀风险的有价值信息。此外,CPM 模型可能有潜力应用于脑成像数据以筛查情感脆弱性,从而有效实施深入的临床评估以进行适当的管理。

值得注意的是,使用 FC 和 SC 的 CPM 模型可以捕捉 LLD 患者自杀风险的变异性。首先,我们的研究结果扩展了基于脑连接组的模型在评估自杀风险方面的效用。正如McHugh和Large所建议的,将自杀风险视为连续而非静态的变量将是有益的,因为这样做可以让临床医生检查患者自杀风险随时间的变化。此外,我们发现从预测模型中提取的连接特征可以捕捉群体级别的差异。这些结果表明,源自 CPM 模型的连接特征可被视为潜在的与自杀相关的神经标志物。然而,由于多种因素,预测模型目前难以实际实施。例如,对有自杀风险患者的诊断和管理可能不允许采集和分析他们的影像数据。其次,临床医生需要接受使用预测方法的培训。此外,应该指出的是,在我们的研究中没有对自杀风险进行纵向评估。因此,我们的结果不能解释为预测自杀意念的未来风险。未来的研究需要采用纵向设计,测试我们的模型或开发进一步的模型来预测未来的自杀风险。

研究认为大脑连接在不同的个体中是独一无二的,并且似乎是一种类似特质的衡量标准,随着时间的推移相对稳定。结构性测量结果显示年轻人 6 个月内的重测可靠性高,而 FC 在老年人 12 个月内适度稳定。然而,FC 的可靠性随着两次扫描之间间隔的增加而降低。此外,成像数据的扫描长度也会影响连接分析的可靠性。之前的研究发现,通过增加扫描时间可以提高静息态 FC 的可靠性。为了尽量减少头部运动的影响,本研究在回归协变量后,对rs-fMRI数据采集的时间约为4分钟。因此,考虑获取扫描长度较长的脑成像数据以提高可靠性是至关重要的。此外,大脑连接可能受到各种因素的影响,如年龄、治疗和压力。老年人表现出网络内连接的下降,尤其是在默认模式网络中。在抑郁症患者接受治疗后,默认模式网络与皮层和边缘区域之间的连接似乎一直在改变。鉴于在我们的数据中,连接特征与年龄或抗抑郁药物负荷没有显著相关,我们的结果不太可能受到这些因素的影响。此外,急性应激反应可导致默认网络和显著网络的FC增加。相比之下,慢性压力与杏仁核和前额叶皮层的功能和结构变化有关。因此,在验证连接特征时需要考虑这些因素。

在解释我们的发现时,还必须考虑其他几个因素。首先,患有导致残疾的医学疾病的老年人自杀风险增加,如癌症、神经系统疾病、肝病以及身体和心理疼痛。在这些人群中,自杀风险和大脑连接之间的关系可能与我们在样本中观察到的不同。此外,已经发现重叠的神经回路与疼痛和自杀有关,例如那些涉及前额叶和扣带皮层的神经回路。因此,研究疼痛对LLD患者自杀风险的影响至关重要。其次,药物和精神药物也可能影响老年人的自杀风险和大脑连接。接受抗炎治疗和抗抑郁治疗的患者可能会降低自杀风险。第三,自杀风险和大脑连接的性别差异已经在文献中被广泛探讨。虽然女性表现出更高的自杀意念和行为率,但男性有更高的自杀企图致死率。与男性相比,女性在额叶、顶叶和颞叶区域的静息态FC更强。男性表现出较大的半球内SC,而女性则表现出较高的半球间FC。值得注意的是,我们的结果主要来自女性LLD患者,因此在男性患者中仍有待验证。未来的研究应考虑招募性别比例更均衡的样本。

目前的研究有几个潜在的局限性。首先,尽管模型已经得到验证,但是目前的样本量很小。此外,我们排除了患有共病精神障碍(GAD除外)或重大医学疾病的患者,以研究相对同质的样本。值得关注的是,有合并症的患者比没有合并症的患者有更高的自杀风险。鼓励未来的研究来验证合并症对自杀风险的影响。同时,必须谨慎的将我们的结果推广到不同于当前样本的临床群体。其次,其中一项外部验证使用了我们团队收集的样本,但这不是完全严格的样本外验证。鼓励未来的工作在其他机构收集的数据集中验证我们的 CPM 模型。第三,虽然我们进行了简短的结构化访谈,但抑郁症的信息,如发病年龄和发作次数,很难可靠地衡量。此外,我们没有确定患者产生自杀意念的具体时间,导致IP组存在异质性。未来的工作应该考虑根据患者有自杀意念的时间对其进行分组。第四,本研究预处理后rs-fMRI数据可用时间仅为4分钟左右。未来研究应考虑增加成像数据的扫描长度,以提高连接分析的可靠性。最后,虽然我们的横断面研究在临床筛查中提供了有用的信息,但仍需要前瞻性研究来监测未来的自杀行为。

总之,我们的研究表明,大脑连接组模型可以预测LLD患者的自杀风险。在区分自杀风险较高的LLD患者和自杀风险较低的LLD患者时,FC和SC 特征提高了分类的准确性。我们的研究结果表明,大脑连接特征为LLD患者过去和现在的自杀风险提供了有价值的信息。本研究中报道的预测模型为开发一种具有成本效益的筛查工具以补充临床自杀风险评估和管理的潜力提供了显著的见解。

原文:Multimodal brain connectome-based prediction of suicide risk in people with late-life depression

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值