论文作者:Yuheng Jia,Wesley Armour
作者单位:University of Oxford
论文链接:http://arxiv.org/abs/2502.21163v1
内容简介:
1)方向:可见光-红外行人重识别(Visible-Infrared Person Re-Identification, VI-ReID)
2)应用:VI-ReID
3)背景:在VI-ReID任务中,由于可见光和红外(RGB-IR)图像之间的模态差异,光照变化和遮挡现象,传统方法难以实现高效的行人识别。为了克服这些挑战,需要开发更为鲁棒的模型。
4)方法:本文提出了一种名为AMINet(自适应模态交互网络)的新型方法。AMINet通过多粒度特征提取,从全身和上半身图像中提取综合身份属性,提高了对遮挡和背景杂乱的鲁棒性。模型采用互动特征融合策略,进行深度的模态内和跨模态对齐,增强了泛化能力,并有效弥合了RGB和IR模态之间的差距。此外,AMINet利用相位一致性提取鲁棒的、光照不变的特征,并采用自适应多尺度核最大均值差异(MMD)对齐不同尺度的特征分布。
5)结果:在多个基准数据集上的大量实验验证了AMINet方法的有效性。在SYSU-MM01数据集上,AMINet达到了74.75%的Rank-1准确率,超越了基线方法7.93%,并且比当前最先进的方法提高了3.95%。