论文作者:Fuyun Wang,Tong Zhang,Yuanzhi Wang,Yide Qiu,Xin Liu,Xu Guo,Zhen Cui
作者单位:Nanjing University of Science and Technology;SeetaCloud Technology;Beijing Normal University
论文链接:http://arxiv.org/abs/2502.20981v1
内容简介:
1)方向:开放集监督异常检测(OSAD)
2)应用:异常检测
3)背景:现有的开放集监督异常检测方法通常会生成伪异常样本以补偿异常样本稀缺的问题,但这些方法忽视了正常样本的关键先验信息,导致判别边界效果不佳,影响了异常检测的准确性和鲁棒性。
4)方法:为了解决上述问题,提出一种分布原型扩散学习(DPDL)方法。该方法通过构建多个可学习的高斯原型来创建正常样本的潜在表示空间,并通过学习一个薛定谔桥(Schrödinger Bridge)促进正常样本向这些原型扩散,同时将异常样本排除在外。此外,为了增强样本之间的分离,作者设计了一种基于超球面空间的离散特征学习方法,这有助于识别分布外的异常样本。
5)结果:实验结果表明,DPDL方法在9个公开数据集上表现出色,达到了当前最先进的方法的性能,验证了其在提升开放集异常检测中判别边界和异常识别能力方面的有效性和优势。