论文信息
题目:Distribution Prototype Diffusion Learning for Open-set Supervised Anomaly Detection
用于开放集监督异常检测的分布原型扩散学习
作者:Fuyun Wang, Tong Zhang, Yuanzhi Wang, Yide Qiu, Xu Guo, Xin Liu, Zhen Cui
论文创新点
- 提出分布原型扩散学习框架:论文提出了分布原型扩散学习(DPDL)框架,该框架联合学习多个高斯原型和相关的扩散桥。通过构建多个可学习的高斯原型,为正常样本创建潜在表示空间,并利用薛定谔桥实现正常样本向原型的扩散转移,有效提升了对异常样本的识别能力。
- 设计超球面空间分散特征学习方法:在超球面空间中设计了分散特征学习(DFL)方法