CVPR 2025 | 用于开放集监督异常检测的分布原型扩散学习

论文信息

题目:Distribution Prototype Diffusion Learning for Open-set Supervised Anomaly Detection
用于开放集监督异常检测的分布原型扩散学习
作者:Fuyun Wang, Tong Zhang, Yuanzhi Wang, Yide Qiu, Xu Guo, Xin Liu, Zhen Cui

论文创新点

  1. 提出分布原型扩散学习框架:论文提出了分布原型扩散学习(DPDL)框架,该框架联合学习多个高斯原型和相关的扩散桥。通过构建多个可学习的高斯原型,为正常样本创建潜在表示空间,并利用薛定谔桥实现正常样本向原型的扩散转移,有效提升了对异常样本的识别能力。
  2. 设计超球面空间分散特征学习方法:在超球面空间中设计了分散特征学习(DFL)方法
<think>好的,我需要处理用户关于CVPR 2025重构扩散模型的研究或论文的查询。首先,我需要确认用户的问题:他们想了解CVPR 2025中关于新的重建扩散模型的研究或论文。不过,CVPR 2025还没有召开,相关论文可能还未发布,因此我需要解释这一点。 接下来,我需要回顾现有的相关研究,特别是2023和2024年的进展,因为这些可能为2025年的趋势提供线索。用户提供的引用中有几篇论文,例如Self-Supervised Visibility Learning和Fast3R,虽然这些不是直接关于扩散模型的,但可能涉及重建技术,可以适当引用。 然后,我应该预测可能的趋势。扩散模型在图像生成和3D重建中的应用正在增长,结合自监督学习或transformer结构可能是未来的方向。例如,Mask Transfiner在实例分割中的应用,可能扩展到扩散模型以提高重建质量。 此外,需要确保回答符合系统级指令,如使用正确的中文和LaTeX格式,生成相关问题。同时,用户希望结构清晰,分步骤解释,引用文献末尾添加标识。 最后,生成的相关问题应围绕扩散模型的应用、技术挑战、与其他技术的结合等,帮助用户进一步探索。</think>[用户可见层] ### CVPR 2025关于重构扩散模型的研究展望 截至2024年7月,CVPR 2025论文尚未公布,但基于当前研究趋势,重构扩散模型可能在以下方向取得进展: 1. **多模态融合扩散模型** 结合自监督学习和扩散过程,用于3D场景重建中的噪声过滤与细节增强。例如,通过引入类似Self-Supervised Visibility Learning的可见性预测模块,提升对遮挡区域的重建精度[^1]。 2. **高效计算架构** 针对大规模3D重建(如1000+图像输入),可能发展类似Fast3R的单次前向传播架构,将扩散模型的迭代优化过程压缩到轻量级网络中[^2]。 3. **语义感知扩散** 在扩散过程中集成实例分割特征(如Mask Transfiner的边界优化策略),实现像素级语义控制的重建[^3]。数学表达可描述为: $$ p_\theta(x_{t-1}|x_t, S) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, S), \Sigma_\theta(x_t, S)) $$ 其中$S$为语义分割图。 4. **动态场景建模** 扩展传统静态重建,通过扩散模型的时间维度建模实现动态物体重建,可能引入隐式神经表示(NeRF)与扩散过程的联合训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值