多模态text-image模型之ITC loss

本文介绍了文图模型中ALBEF论文中的Image-TextContrastiveLoss(ITCloss),该损失函数用于学习更好的单模态表示,并通过momentumunimodalencoders稳定表示质量。ITCloss涉及计算图像到文本和文本到图像的相似度,以及基于softmax和交叉熵的优化方法。后续还提及了Image-TextMatching(ITM)loss的更新情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看多模态内容,记录一下文图模型中常用的损失函数。最先提出ITC loss的是论文ALBEF,下面是文章对该Loss的定义

假设有输入图片 I 经过image encoder之后变成{ v c l s , v 1 , … , v N v_{cls}, v_1, …, v_N vcls,v1,,vN},输入文本 T 经过 text encoder 后变成{ w c l s , w 1 , … , w N w_{cls}, w_1,…, w_N wcls,w1,,wN}

ITC Loss 的全称是 Image-Text Contrastive Loss ,为了在融合之前学习更好的unimodal表示,它学习 s = g v ( v c l s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值