AI-多模态-2022:TCL【triple contrastive learning】【三重对比学习的视觉-语言预训练模型】

TCL论文提出在多模态预训练中使用CMA、IMC和LMI三种对比学习损失,以及ITM和MLM任务,以增强视觉-语言模型的表现。通过在COCO、VG等数据集上预训练,TCL在跨模态检索任务上取得优秀成绩,是ALBEF的扩展和改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:https://arxiv.org/pdf/2202.10401.pdf

代码:https://github.com/uta-smile/TCL

写在前面:

CPC[1]这篇论文中,作者对互信息的公式进行了分析,得到互信息下界的相反数为InfoNCE loss,即最小化InfoNCE Loss可以最大化互信息的下界,从而使得互信息最大。即对比学习的infoNCE等价于最大互信息。在TCL这篇文章中,作者即说用了对比学习,又说用了最大化互信息,实则二者都是infoNCE loss。

Summary

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值