智能风控:Python金融风险管理与评分卡建模

互联网金融与金融科技是数据从业者较为关注的方向之一。风险控制是金融的核心。信贷场景下的风险,很大程度上取决于贷款人的信用风险。因此,如何对贷款用户的信用风险进行合理度量,是信贷平台关注的首要问题。

智能金融风控中,数据、模型、策略是几个关键环节。

包括问题分 析、指标加工、模型训练、效果监控和模型迭代等。

信贷业务又称信贷资产或贷款业务,是商业银行和互联网金融公司 最重要的资产业务和主要赢利手段,通过放款收回本金和利息,扣除成 本后获得利润。对有贷款需求的用户,贷款平台首先要对其未来的还款 表现进行预测,然后将本金借贷给还款概率大的用户。 信用管理主要包含两个概念——信用和管理

信用意味着先买后付,即使用信用值来预支金钱以购买相应服务。

管理即通过用户信息对 用户的信用度进行评估,并根据信用情况定制风险规避策略。

所谓风险控制(简称风控),即对用户风险进行管理和规避的过程。

在信贷管理领域,有一个非常重要的概念叫作风险数据分析,它用于对用户的信用风险进行管理与规避。对于预测信用较差的人,贷款机构一般是不会向其放款的,即便放款,为了抵御风险,也会 给予其较高的利息与较小的贷款金额。风险数据分析中最重要的技术手段就是风控建模。

企业的信贷风控架构如下图所示。 互联网金融的申请过程,通常由用户从移动端(如手机App、网页 等)发起,首次贷款用户会经历申请、四要素验证、授信与额度利率定价、多层审批、用户提款等多个环节。不符合申请资质要求的用户,在 其中的多个环节都有可能被拒绝。而对于还款后再次贷款的复贷客户, 平台通常会给予更好的信用评估结果,并根据历史还款表现对其进行额度管理。

用户四要素包括身份证号、姓名、手机号、银行卡号。

平台设置四要素验证,根据申请用户填写的信息,同时联系相关机构校验用户是否 为信息所有人。平台根据信用评分可以有效估计申请人的信用,并据此使用差异化定价手段为用户授信不同的额度。通常,用户的信用评估结果越好,平台授予用户的可贷款额度就越高,且贷款利率越低。为降低用户信用风险为平台带来的损失,通常平台会给予信用评分较低的用户更低的额度,且在监管与法律规定内,使用相对较高的贷款利率来弥补风险损失。

首次贷款用户需要依次通过反欺诈引擎、信用评估引擎、人工审核的审批。

信用评估引擎主要包括政策规则筛选、信用规则筛选、申请评分卡评分等步骤。

政策规则包含用户年龄、身份是否满足法定贷款要求;

信用规则通常由风险分析方法得到相应的策略规则;

申请评分卡是用户授信的主要依据,建模人员根据用户的征信数据以及统计模型,对用户未来的还款情况进行预估。

基于统计手段的信用评分卡起源于20世纪的银行与信用卡中心。在最开始的审批过程中,用户的信用等级由专家进行主观评判。随着数据 分析工具的发展、量化手段的进步,各大银行机构逐渐使用统计模型将 专家的评判标准量化为评分卡模型。如今,风险量化手段早已不局限于银行等传统借贷机构,持牌互联网公司的金融部门、持牌消费金融公司等都具有成体系的风险量化手段,通过统计手段实现贷款人群的额度的风险刻画。

顾名思义,评分卡是一张有分数刻度和相应阈值的表。对于任何一个用户,总能根据其信息找到对应的分数。将不同类别的分数进行汇总,就可以得到用户的总分数。信用评分卡,即专门用来评估用户信用的一张刻度表。

第一列代表当前评分特征的中文变量名,第二列表示当前评分特征在数据系统中的指代名。由于常用的数据系统以及编程环境对中文的支持度较差,因此通常使用英文指代名作为开发脚本中的指代名称。第三列描述了当前特征的详细信息。第四列确定了特征的分组阈值。最后一列表示当前特征在固定范围内时,评分卡上增加的分数,其结果有正值和负值,表示除了在基础分上增加分数外,部分特征的取值会为用户的信用带来负面影响。

例如,表中年收入少于19万的用户会在整体分数上扣掉12分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值