互联网金融与金融科技是数据从业者较为关注的方向之一。风险控制是金融的核心。信贷场景下的风险,很大程度上取决于贷款人的信用风险。因此,如何对贷款用户的信用风险进行合理度量,是信贷平台关注的首要问题。
智能金融风控中,数据、模型、策略是几个关键环节。
包括问题分 析、指标加工、模型训练、效果监控和模型迭代等。
信贷业务又称信贷资产或贷款业务,是商业银行和互联网金融公司 最重要的资产业务和主要赢利手段,通过放款收回本金和利息,扣除成 本后获得利润。对有贷款需求的用户,贷款平台首先要对其未来的还款 表现进行预测,然后将本金借贷给还款概率大的用户。 信用管理主要包含两个概念——信用和管理。
信用意味着先买后付,即使用信用值来预支金钱以购买相应服务。
管理即通过用户信息对 用户的信用度进行评估,并根据信用情况定制风险规避策略。
所谓风险控制(简称风控),即对用户风险进行管理和规避的过程。
在信贷管理领域,有一个非常重要的概念叫作风险数据分析,它用于对用户的信用风险进行管理与规避。对于预测信用较差的人,贷款机构一般是不会向其放款的,即便放款,为了抵御风险,也会 给予其较高的利息与较小的贷款金额。风险数据分析中最重要的技术手段就是风控建模。
企业的信贷风控架构如下图所示。 互联网金融的申请过程,通常由用户从移动端(如手机App、网页 等)发起,首次贷款用户会经历申请、四要素验证、授信与额度利率定价、多层审批、用户提款等多个环节。不符合申请资质要求的用户,在 其中的多个环节都有可能被拒绝。而对于还款后再次贷款的复贷客户, 平台通常会给予更好的信用评估结果,并根