数据挖掘模型——K-Means聚类算法——python代码

K-Means算法是典型的基于距离的非层次聚类算法,在最小化误差函数的基础上将数据划分为预定的类数K,采用距离作为相似性评价指标,即认为两个对象的距离越近,其相似度越大。

(1)算法过程

  a:从N个样本数据中随机选取K个对象作为初始的聚类中心;

  b:分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类中;

  c:所有对象分类完成后,重新计算K个聚类的中心;

  d:与前一次计算得到的K个聚类中心比较,若聚类中心发生变化,转过程2,否则,转过程5;

  e:当质心不发生变化时,停止并输出聚类结果。

(2)数据类型与相似性变量

  连续属性,先对各属性值进行零——均值规范,再进行距离计算。K-Means算法,一般需先度量样本间(欧几里得距离、曼哈顿距离、闵可夫斯距离) ,样本与簇间(样本到簇中心的距离)及簇与簇间距离(簇中心距离 )。

  文档数据,使用余弦相似性度量,先将文档数据整理成文档——词矩阵格式,再计算相似性

(3)目标函数

  使用误差平方和SSE作为度量聚类质量的目标函数,对两种不同的聚类结果,选择误差平方和较小的分类结果。

  连续属性的SSE

  文档数据的SSE

  簇Ei的聚类中心ei

#-*- coding: utf-8 -*-
#使用K-Means算法聚类消费行为特征数据

import pandas as pd

#参数初始化
inputfile = '../data/consumption_data.xls' #销量及其他属性数据
outputfile = '../tmp/data_type.xls' #保存结果的文件名
k = 3 #聚类的类别
iteration = 500 #聚类最大循环次数
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化

from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model.fit(data_zs) #开始聚类

#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns = list(data.columns) + [u'类别数目'] #重命名表头
print(r)

#详细输出原始数据及其类别
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
r.to_excel(outputfile) #保存结果


def density_plot(data): #自定义作图函数
  import matplotlib.pyplot as plt
  plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
  plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
  p = data.plot(kind='kde', linewidth = 2, subplots = True, sharex = False)
  [p[i].set_ylabel(u'密度') for i in range(k)]
  plt.legend()
  return plt

pic_output = '../tmp/pd_' #概率密度图文件名前缀
for i in range(k):
  density_plot(data[r[u'聚类类别']==i]).savefig(u'%s%s.png' %(pic_output, i))

TSNE:聚类结果可视化工具

#-*- coding: utf-8 -*-
#接k_means.py
from sklearn.manifold import TSNE

tsne = TSNE()
tsne.fit_transform(data_zs) #进行数据降维
tsne = pd.DataFrame(tsne.embedding_, index = data_zs.index) #转换数据格式

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

#不同类别用不同颜色和样式绘图
d = tsne[r[u'聚类类别'] == 0]
plt.plot(d[0], d[1], 'r.')
d = tsne[r[u'聚类类别'] == 1]
plt.plot(d[0], d[1], 'go')
d = tsne[r[u'聚类类别'] == 2]
plt.plot(d[0], d[1], 'b*')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值