线性代数复习分析(向量组与矩阵的秩)

3.1数字向量组的线性相关性
1.note
please note that the basic column operation don’t change the linearly dependence of the row vectors
2.the way we judge the linearly independence

  1. use the det
  2. use the pivot element
  3. use the row(column) operation
  4. use the AX=B and do the reduction
  5. get its rank
  6. sometimes we are asked to give the concrete equation , then just like a linear equation
  7. also in this field we can get the base and every vector’s position


    3.2带参数向量组的线性相关性
    method 1
    use the det
    problem1(1)

    description:judge that vector a1=(1,t12,t12,t13),a2=(1,t22,t22,t23),a3=(1,t32,t32,t33),a4=(1,t42,t42,t43) linearly operation
    solution
    1111t1t2t3t4t21t22t23t24t31t32t33t34=1<=i<j<4(titj)!=0(the key)

    so the group is linearly independent
    end

    method 2
    in the end we will see that the final key is just a equation and we will see that it is covered with the operation that we have introduced before , so just have fun also the special det is needed
    good example



    please look them , they are very classical
    3.3抽象向量组的线性相关性


3.4数字矩阵的秩
we don’ t want to explain too much
just find the pivot column
3.5带参数矩阵的秩
in this part just solve the matrix and consider different perspectives

question1

description:find the value of a,which makes the rank of the matrix gets the minimum .
3a1214721101744133(condition)

solution

use row operation
10004500101300a1+43aa0(condition)

then when the a == 2 , we can get the matrix whose rank is 2
3.6~3.8
because of the time left is limited , i will update in the holiday ,
sorry

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值