3.1数字向量组的线性相关性
1.note
please note that the basic column operation don’t change the linearly dependence of the row vectors
2.the way we judge the linearly independence
- use the det
- use the pivot element
- use the row(column) operation
- use the AX=B and do the reduction
- get its rank
- sometimes we are asked to give the concrete equation , then just like a linear equation
- also in this field we can get the base and every vector’s position
3.2带参数向量组的线性相关性
method 1
use the det
problem1(1)
description:judge that vector a1=(1,t12,t12,t13),a2=(1,t22,t22,t23),a3=(1,t32,t32,t33),a4=(1,t42,t42,t43) linearly operation
solution
⎛⎝⎜⎜⎜⎜1111t1t2t3t4t21t22t23t24t31t32t33t34⎞⎠⎟⎟⎟⎟=∏1<=i<j<4(ti−tj)!=0(the key)
so the group is linearly independent
end
method 2
in the end we will see that the final key is just a equation and we will see that it is covered with the operation that we have introduced before , so just have fun also the special det is needed
good example
please look them , they are very classical
3.3抽象向量组的线性相关性
3.4数字矩阵的秩
we don’ t want to explain too much
just find the pivot column
3.5带参数矩阵的秩
in this part just solve the matrix and consider different perspectives
question1
description:find the value of a,which makes the rank of the matrix gets the minimum .
⎛⎝⎜⎜⎜3a1214721101744133⎞⎠⎟⎟⎟(condition)
solution
use row operation
⎛⎝⎜⎜⎜⎜⎜10004500101300a−1+43aa0⎞⎠⎟⎟⎟⎟⎟(condition)
then when the a == 2 , we can get the matrix whose rank is 2
3.6~3.8
because of the time left is limited , i will update in the holiday ,
sorry