注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!
C 题 清明时节雨纷纷,何处踏青不误春?
问题1 基于天气现象分类标准,明确“雨纷纷”对应的降雨量区间及降雨持 续时间范围。根据天气学的基本知识,在适当简化的基础上,建立数 学模型,分析 2026 年清明假期西安、吐鲁番、婺源、杭州、毕节、武 汉、洛阳会“雨纷纷”吗?利用近 20 年的天气资料分析 2025 年清明 的天气情况,验证所建模型的合理性。给出利用最新的天气实况进行 模型修正的方法。
问题 1 分析
我们需从气象学的视角对诗句“清明时节雨纷纷”进行科学转化,明确“雨纷纷”在现代天气观测中的对应含义。通常,“雨纷纷”可被理解为小雨或连阴雨,具有降水量不大但持续时间较长的特征。依据国家气象局的天气现象分类标准,小雨日降水量通常为0.1至10毫米,而“纷纷”则暗示其非瞬时性降水过程,因此可设定持续时间不少于3小时。在此基础上,我们可构建一个判别性模型,设定逻辑条件判断某天是否属于“雨纷纷”天气类别。为判断2026年清明期间西安、吐鲁番、婺源、杭州、毕节、武汉和洛阳是否存在“雨纷纷”现象,可利用过去20年(如2006–2025年)的逐日气象观测数据(包括日降水量、降水时段和天气现象代码)进行建模分析。模型应能根据历史模式对未来天气进行概率预测,并结合2026年的中长期天气预报进行推演。同时,为验证模型有效性,应基于2025年清明假期实际天气数据对模型结果进行回代测试,评估判别准确率,并进一步结合最新实况天气(如ECMWF或CMA发布的T+7预报数据)进行实时修正,提升模型动态响应能力。
解题思路:基于气象数据的“雨纷纷”天气判别模型及清明节雨况预测
一、问题理解与气象背景提取
诗句“清明时节雨纷纷”描绘的是一种典型的春季小雨天气。依据现代天气学标准,该表达可转化为定量化的气象条件判别。小雨在日降水量统计中通常定义为 0.1–10 mm 的降雨过程;“纷纷”强调降水的连贯性和持续性,因此我们需结合降水量与降雨时长双指标定义“雨纷纷”。
二、指标定义与分类标准
为便于定量建模,我们定义以下判别条件:
设任一日降水量为 P,单位为 mm;
设该日降雨持续时长为 D,单位为小时;
设该日天气现象代码为 W(来自NOAA或国家气象局编码标准);
定义判断函数:
其中,R(d) 表示第 d 天是否属于“雨纷纷”状态。
为使模型可扩展,我们引入连续性判断:
其中 k 为窗口宽度(一般取 k=3 天),为连阴判断阈值(例如
表示3天中有至少两天为“雨纷纷”)。
三、数据处理流程
清明节定位:取每年4月4日至4月6日为清明节区间,扩展观察窗口为3月30日至4月7日,共计9天。
站点选取:根据提供的NOAA数据样例,筛选西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳对应站点编号。
历史数据提取:对近20年(2006–2025)的气象记录进行逐年提取,构造特征集合 {}。
模型训练:通过统计该时间段内的 R(d) 与 结果,估算每年清明期间该城市出现“雨纷纷”的频率。
定义频率函数:
其中 i 表示城市编号,N=20 为统计年数,表示第 y 年第 i 城市的“雨纷纷”判别结果。
四、未来天气预测建模(2026年)
为预测2026年清明节是否“雨纷纷”,考虑两种建模方式:
4.1 相似年法
基于气候相似性匹配:
定义特征向量
利用欧氏距离或余弦相似度度量与历史年份的接近程度:
选择最近的 K 个年份,取其 的均值作为概率估计。
4.2 天气时间序列建模法
构建SARIMA模型对降水时间序列进行预测:
也可考虑 Prophet 模型对逐日降水趋势建模:
其中 g(t) 为趋势项,s(t) 为周期项,h(t) 为节假日效应。
五、模型验证与修正
5.1 验证方法(2025年)
采用2025年真实天气数据计算预测误差:
误差项定义:
5.2 模型修正(最新天气实况)
结合T+7气象预报(即2026年4月初发布的清明预测),用Bayes更新方式修正概率:
实时修正模块亦可采用卡尔曼滤波迭代方式优化趋势预测值。
表:各城市2006–2025年清明期间“雨纷纷”出现概率统计
Python代码:
import os
import pandas as pd
import matplotlib.pyplot as plt
data_dir = r'./extracted'
target_years = list(range(2006, 2026))
target_days = ['03-30', '03-31', '04-01', '04-02', '04-03', '04-04', '04-05', '04-06', '04-07']
station_map = {
'Xi\'an': '01001099999',
'Turpan': '01001499999',
'Wuyuan': '01002099999',
'Hangzhou': '01003099999',
'Bijie': '01006099999',
'Wuhan': '01003099999',
'Luoyang': '01001099999'
}
results = []
for city, station_id in station_map.items():
rainy_years = 0
for year in target_years:
year_folder = os.path.join(data_dir, str(year))
file_list = os.listdir(year_folder)
matched_files = [f for f in file_list if station_id in f]
if not matched_files:
continue
file_path = os.path.join(year_folder, matched_files[0])
try:
df = pd.read_csv(file_path)
df['MM-DD'] = pd.to_datetime(df['DATE'], errors='coerce').dt.strftime('%m-%d')
df = df[df['MM-DD'].isin(target_days)]
# 降雨字段 PRCP(英寸)→ mm
df['PRCP'] = pd.to_numeric(df['PRCP'], errors='coerce') * 25.4
df['RainFlag'] = df['PRCP'].apply(lambda x: 1 if 0.1 < x <= 10 else 0)
if df['RainFlag'].sum() >= 2:
rainy_years += 1
except Exception as e:
print(f"[!] 文件读取失败: {file_path},原因: {e}")
continue
prob = rainy_years / len(target_years)
results.append({'City': city, 'RainyYears': rainy_years, 'TotalYears': len(target_years), 'Probability': round(prob, 3)})
# 输出表格
table4 = pd.DataFrame(results)
print("表4:各城市2006–2025年清明期间“雨纷纷”出现概率统计")
print(table4.to_string(index=False))
# 可视化并保存图像(避免非法字符)
plt.figure(figsize=(10, 6))
plt.bar(table4['City'], table4['Probability'], color='lightblue', edgecolor='black')
plt.title('Estimated Probability of Rain "Fen Fen" (2006–2025 Qingming)')
plt.ylabel('Probability')
plt.ylim(0, 1)
plt.grid(axis='y', linestyle='--', alpha=0.6)
for i, prob in enumerate(table4['Probability']):
plt.text(i, prob + 0.02, f"{prob:.2f}", ha='center')
plt.tight_layout()
plt.savefig('Rain_FenFen_Probability_2006_2025_Qingming.png') # ✔合法文件名
后续都在“数模加油站”......