Abstract & Introduction & Related Work
- 研究任务
- 预训练语言模型
- 已有方法和相关工作
- 面临挑战
- 虽然它们在转移到下游的NLP任务时产生了很好的结果,但它们通常需要大量的计算才能有效
- 创新思路
- 我们提出了一个更有样本效率的预训练任务,叫做替换token检测。我们的方法不是mask输入,而是通过用从小型生成器网络中抽样的合理的替代物来替换一些token来破坏它
- 我们不是训练一个预测被破坏的token的原始身份的模型,而是训练一个判别模型,预测被破坏的输入中的每个token是否被一个生成器样本所取代
- 实验结论
吊打BERT,跟RoBERTa和XLNet有差不多的性能,并且只用了1/4的参数量
Electra Large打败了ALBERT
METHOD
token替换检测:生成器可以是任何能产生token输出分布的模型,但我们通常使用一个小型的掩码语言模型,与鉴别器共同训练。尽管这些模型的结构与GAN相似,但由于GAN难以应用于文本,我们用极大似然估计而不是对抗法来训练生成器。在预训练之后,我们扔掉生成器,只对判别器(ELECTRA模型)进行微调
我们的方法训练两个神经网络,一个生成器G和一个判别器D
e是embedding,对于一个位置t生成器输出 x t x_t x