Raki的读paper小记:ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS

Abstract & Introduction & Related Work

  • 研究任务
    • 预训练语言模型
  • 已有方法和相关工作
  • 面临挑战
    • 虽然它们在转移到下游的NLP任务时产生了很好的结果,但它们通常需要大量的计算才能有效
  • 创新思路
    • 我们提出了一个更有样本效率的预训练任务,叫做替换token检测。我们的方法不是mask输入,而是通过用从小型生成器网络中抽样的合理的替代物来替换一些token来破坏它
    • 我们不是训练一个预测被破坏的token的原始身份的模型,而是训练一个判别模型,预测被破坏的输入中的每个token是否被一个生成器样本所取代
  • 实验结论
    吊打BERT,跟RoBERTa和XLNet有差不多的性能,并且只用了1/4的参数量
    Electra Large打败了ALBERT

在这里插入图片描述

METHOD

token替换检测:生成器可以是任何能产生token输出分布的模型,但我们通常使用一个小型的掩码语言模型,与鉴别器共同训练。尽管这些模型的结构与GAN相似,但由于GAN难以应用于文本,我们用极大似然估计而不是对抗法来训练生成器。在预训练之后,我们扔掉生成器,只对判别器(ELECTRA模型)进行微调
在这里插入图片描述
我们的方法训练两个神经网络,一个生成器G和一个判别器D

e是embedding,对于一个位置t生成器输出 x t x_t x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值