大模型的显存占用计算方法

参数的数量和量化决定了模型的大小,这是使用LLM的一个主要限制。

要使用 LLM,我们必须将模型放入内存中。使用 32 位浮点 (FP32),1 个参数需要 4 字节 RAM。

使用 16 位量化(BFLOAT16 或 FP16),我们可以将其减少到 1 个参数的 2 字节 RAM。

对于 8 位整数 (INT8),我们需要 1 字节的 RAM 用于 1 个参数。

因此,在内存中存储 10 亿 (1B) 个 LLM 参数需要大约 4GB 内存(32 位全精度)、2GB 内存(16 位半精度)和 1GB 内存(8 位精度)。

举例来说,我的 GeForce 2060 显卡有 6 GB 的内存,可以容纳大约 1.5B 参数@32 位,或 3B 参数@16 位,或 6B 参数@8 位。

但是,仅加载 CUDA 内核就会消耗 1-2GB 的内存。因此,实际上,您无法仅使用参数填满整个 GPU 内存。

训练 LLM 需要更多的 GPU RAM,因为优化器状态、梯度和前向激活每个参数都需要额外的内存 [3]。

选择 LLM 时,请查看 GPU 有多少 GB 的内存,然后选择合适的模型。使用 1B 参数 = 2GB@16 位或 1GB@8 位作为经验法则。


欢迎你分享你的作品到我们的平台上. http://www.shxcj.com 或者 www.2img.ai 让更多的人看到你的才华。

创作不易,觉得不错的话,点个赞吧!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值