多因子归检验中的NeweyWest调整

转 多因子回归检验中的 Newey-West 调整

作者:石川,量信投资创始合伙人,清华大学学士、硕士,麻省理工学院博士;精通各种概率模型和统计方法,擅长不确定性随机系统的建模及优化。知乎专栏:https://zhuanlan.zhihu.com/mitcshi。未经授权,严禁转载。

摘要:Newey-West 调整是计量经济学中的经典方法,在多因子模型回归分析中无处不在。本文介绍它的用法。

1、引言

本文有很多数学公式。

本文的推导重点参考了 William Greene 的经典教材 Econometric Analysis(Greene 2003,我用的第五版,最新的出到了第八版)。

本文回答了一个曾让我纠结很久的问题。

在学术界关于 empirical asset pricing 的论文中,portfolio test 和 regression test 是检验一个新因子是否有效的两个常见手段。在前者中,使用已有因子的收益率作为 regressors、使用基于新因子构建的投资组合的收益率作为被解释变量,进行时序回归,从而检验新因子组合是否可以获得超额收益 α、以及它在已有因子上的 β。在后者中,新因子和已有因子一起被用来和个股收益率进行截面回归(通常使用 Fama-MacBeth regression),然后考察新因子的预期收益率 E[f] 是否显著不为零。

无论是上面哪种方法,学者们都会对回归分析得到的 α、β 以及 E[f] 给出 t-statistic 从而检验它们的显著性。而在学术论文所报告的结果中,经常出现诸如“Newey and West adjusted t-statistic”或者“Newey and West adjusted standard error”(standard error 是用来计算 t-statistic 的)这样的描述。这不禁让人疑问:回归检验中的 Newey and West 调整到底是什么?

除了要搞懂它到底是什么之外,我们也关心它是如何实操的,这样才能将它用在 A 股的实证研究中。这就是本文关心的话题。本文的内容提要如下:

第二、三节介绍必要的数学背景,解释 Newey-West 调整的重要性。

第四节针对 A 股进行 portfolio test 的实证研究,指出考虑 Newey-West 调整后 α 和 β 的显著性的变化。

第五节说明通过 Fama-MacBeth regression 求解因子预期收益率 E[f] 中的 Newey-West 调整是一种简化版。

第六节总结本文,并评论一下 Barra 在计算协方差矩阵中的 Newey-West 调整。

让我们从广义线性回归说起。

2、广义线性回归

考虑如下广义线性回归模型(generalized linear regression model):


上述模型是时序上的线性回归模型;其中 y 是 T × 1 阶向量(T 代表时序的总期数);X 是 T × K 阶矩矩阵(其中 K 是 regressors 的个数);ε 是 T × 1 阶残差向量;Σ(T × T 阶)是残差的协方差矩阵。回归的目的是为了得到回归系数 β(K × 1 阶矩阵)并检验它们的显著性。

上述模型和经典线性回归模型最大的区别是矩阵 Ω 的引入。在经典模型中假设给定解释变量 X 下,不同时刻 t 的残差是独立且同方差,因此 Ω 是单位阵 I

在广义线性回归中,残差独立、同方差这两个假设均可被打破,从而得到两个残差中常见的特性:异方差(heteroscedasticity)自相关(autocorrelation)。多因子模型回归中的残差就经常呈现上述两种特性。在广义线性回归模型中引入 Ω 正是为了反映上述特性。以下是两个例子。

对于异方差(但仍可以假设独立),通常有:


对于自相关(但同方差),通常有:


当然我们也可以既考虑异方差又考虑自相关性。在一般情况下 Ω 矩阵中第 i 行、第 j 列的元素用 ω_{ij} 表示。

如果 Ω 已知,则通常使用 generalized least squares 来对 β 进行参数估计。但当 Ω 未知时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值