tensorflow 学习笔记3 placeholder与激活函数

placeholder使用的时候和前面的variable不同的是在session运行阶段,需要给placeholder提供数据,利用feed_dict的字典结构给placeholdr变量“喂数据”。

import tensorflow as tf
#placeholder 传入值  运行结果时给它一个输入值,与feed_dict绑定
input1=tf.placeholder(tf.float32)
input2=tf.placeholder(tf.float32)
output=tf.multiply(input1,input2)
with tf.Session() as sess:
    print(sess.run(output,feed_dict={input1:[7.0],input2:[2.0]}))

结果:

[14.]
常见的激活函数有:

tf.nn.relu
tf.nn.relu6
tf.nn.crelu
tf.nn.elu
tf.nn.softplus
tf.nn.softsign
tf.nn.dropout
tf.nn.bias_add
tf.sigmoid
tf.tanh

sigmoid:

\sigma \left( x\right) =\dfrac {1} {1+e^{-x}}


tanh函数:

\tanh \left( x\right) =2\sigma \left( 2x\right) -1


relu函数:

f\left( x\right) =\max \left( 0,x\right)


leaky relu函数:

ReLU 中当 x<0 时,函数值为 0。而 Leaky ReLU 则是给出一个很小的负数梯度值,比如 0.01。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值