【机器学习】监督学习--(回归)LASSO

本文介绍了如何使用Python的sklearn库进行LASSO回归,通过LassoCV方法对'longley.csv'数据集进行特征选择和预测,并展示了系数和相关系数计算。数据集包含经济增长指标和就业数据,用于探索变量之间的关系。
摘要由CSDN通过智能技术生成

注:数据集放在文章末尾

● LASSO —— sklearn
import numpy as np
from numpy import genfromtxt
from sklearn import linear_model

# 读入数据 
data = genfromtxt(r"longley.csv",delimiter=',')

# 切分数据
x_data = data[1:,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值