【人脸识别】Cos Face中的LMCL详解

论文题目:《CosFace: Large Margin Cosine Loss for Deep Face Recognition》
论文地址:https://arxiv.org/pdf/1801.09414.pdf

1. 简介

       该论文在2018年发表,主要是提出了新的人脸识别损失函数:LMCL(Large Margin Cosine Loss)。

在这里插入图片描述
       图 1:我们提出的 CosFace 框架。在训练阶段,使用不同类之间的增强边缘学习判别性的人脸特征。在测试阶段,首先将测试数据输入 CosFace 来提取人脸特征,然后再将这些特征用于计算余弦相似度分数以执行人脸验证和人脸辨识。

2. LMSL

       原始的softmax loss如公式(1)所示:

在这里插入图片描述
       其中:N为训练的样本数,p_i为条件概率,C为类别总数,f_yi是当前类别权重W_j和feature x的乘积,bias置0。

在这里插入图片描述
       公式(2)在原来softmax的基础上对W和x做L2 Normalization,使其Norm为1,但是考虑到x的Norm太小会导致训练loss太大(softmax的值太小),故进行一次缩放,固定大小为S,所以修改后的loss如公式(3)所示,也称为NSL,Normalized version of Softmax Loss:

在这里插入图片描述

       到目前为止,模型只是转换了学习空间而已,由最开始的优化内积变成了现在的优化角度,但是学习到的feature仍然只是separable,还没到达我们的目标:discriminative features。(NSL强调的是正确分类,也就是说能达到将类内距最小化,却无法同时做到将类间距最大化。)
       所以引入一个cosine margin来进行度量的约束,让当前样本所属的类别在减去一个m之后仍然属于这个类别,即:

在这里插入图片描述
       所以此时的loss变为LMCL,如公式(4)所示。
在这里插入图片描述
注意,margin的相减操作是针对cosine的,所以scale的缩放仍然放在最外层。

3. 不同loss函数的比较

在这里插入图片描述

1. Softmax Loss

在这里插入图片描述
       softmax loss的边界函数同时依赖权重向量的量级和权重与样本特征向量之间的角度,所以会导致决策区域有重复。

2. NSL,Normalized Softmax Loss

在这里插入图片描述
       归一化后的softmax,决策边界只与角度有关,所以分类决策面就是一条线。

3. A-Softmax

在这里插入图片描述
       A-Softmax是对角度theta进行约束,故呈现在cos(theta)的坐标中,是一个扇形页面分界区。但是A-Softmax的margin是不连续的,随着theta的降低,margin也在跟着减小,当theta等于0的时候margin甚至消失,另外,A-Softmax还需要解决非单调性问题。

4. LMCL,Large Margin Cosine Loss

在这里插入图片描述
       最后,这篇文章提出的LMCL是对cosine值加margin进行约束,所以他们的分界区是类似于SVM的margin area一样的一块矩形,且margin的宽度为(根号2乘以m)。

在这里插入图片描述
       上图为NSL和LMCL的比较。

4. 实验分析

在这里插入图片描述
图4:不同损失函数在 8 个带有 2D 特征的身份上的简化实验。第一行是将 2D 特征映射到欧几里德空间上,而第二行是将 2D 特征投射到角空间上。随着边缘值 m 增大,间隙变得越来越明显。在这里插入图片描述
图 5:在 LFW 和 YTF 上,具有不同边缘参数值 m 的 CosFace 的表现(%)。

5. 为什么要进行feature Normalization

       特征进行Feature Normalization之后,整体的结构就变成了cosine loss的形式。原始的softmax loss函数在进行优化的时候,不仅学习了角度的余弦值也隐式的学习了特征向量的Euclidean norm (L2-norm), L2 Norm在整个loss中是自适应的学习,就导致了cosine约束的变弱,如果限制所有的feature都是同样大小的norm,那么整个优化过程就只依赖于余弦值来获得有区分力的特征。
       根据happynear文章中的介绍,一般图像质量差的图片norm比较小,做了Normalization之后再进行反向传播的时候,求出的梯度就更大。这样网络就会更关注低质量的人脸图片。有点类似于hard sample mining。

6. 总结

       在深度卷积神经网络(CNN)的发展的推动下,人脸识别已经取得了革命性的进展。人脸识别的核心任务涵盖人脸验证和人脸辨识,都涉及到人脸特征判别。但是,深度 CNN 的传统 softmax 损失通常缺乏判别能力。为了解决这个问题,最近有 Center Loss、L-Softmax、A-Softmax 等一些损失函数被提了出来。所有这些改进算法都基于同一个思想:最大化类间差异并且最小化类内差异。在这篇论文中,我们设计了一种全新的损失函数增强边缘余弦损失函数 (LMCL),从不同的角度实现了这一想法。具体而言,我们通过对特征向量和权向量的 L2 归一化,把 softmax 损失函数转化为余弦损失函数,这样做消除了半径方向的变化,并在此基础上引入了一个余弦边缘值 m 来进一步最大化所学习的特征在角度空间的决策边界。由此,通过归一化和余弦决策边界的最大化,可实现类间差异的最大化和类内差异的最小化。我们将我们使用 LMCL 训练得到的模型称为 CosFace。为了测试我们的方法,我们在 MegaFace Challenge、YouTube Faces (YTF) 和 Labeled Face in the Wild (LFW) 等最流行的公开域人脸识别数据集上进行了大量实验评估。我们在这些基准实验上实现了当前最佳的表现,这证明了我们的方法的有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值