Keras 深度学习攻略两篇(1):十种卷积神经网络(CNN)框架——总结与可视化分析

十种卷积神经网络框架

1. 概述

  • 论文发表时间:
    在这里插入图片描述

  • Keras 中的部分模型

    在这里插入图片描述

现在已经不止6种:Keras Documentation

在这里插入图片描述

“[m]ost of this progress is not just the result of more powerful hardware, larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and improved network architectures.” (Szegedy et al, 2014)

2 .可视化解读十种CNN框架

在这里插入图片描述

2.1 LeNet-5(1998)

在这里插入图片描述

LeNet-5 是最简单的框架之一,由2个卷积层和三个全连接层组成(因此叫做”5“——这种使用据卷积层和全连接层的数量来命名是一种很常普遍的做法)

创新点
这个模型成为了一个标准”模板“:堆叠卷积层和池化层,最后以一层或者多层的全连接层结尾。

发表

2.2 AlexNet(2012)

在这里插入图片描述
参数量60M的AlexNet有八层网络——5层卷积核3层全连接层。
相比LeNet-5来说,AlexNet也不过是多了几层网络。作者在论文中提到,他们“在ImageNet子集上训练了到目前为止最大的神经网络之一”。

创新点:

  • 第一次使用Rectified Linear Units (ReLUs) 作为激活函数

发表:

2.3 VGG16(2014)

在这里插入图片描述
相信你也注意到了CNNs网络的层数变得越来越深。这是因为提升提升深度神经网络模型
性能最直接的方式就是提升它的大小(Szegedy et. al)。
VGG16由 Visual Geometry Group (VGG) 的人提出,它包含13个卷积层和3个全连接层,激活函数沿用的AlexNet的ReLU。
相比AlexNet,VGG16堆叠了更多地层,同时使用了更小的卷积核(2×2 and 3×3))。VGG16模型参数的大小是138M,同时需要500M的储存空间!他们也训练了另外一个网络:VGG19。

创新点:

2.4 Inception-v1(2014)

注:这个模型的名称(Stem and Inception)并没有在这个版本使用,而是在其后续版本,Inception-v4 和 Inception-ResNets出来之后才这么叫。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值