典型深度学习框架
十种卷积神经网络框架
1. 概述
-
论文发表时间:
-
Keras 中的部分模型
现在已经不止6种:Keras Documentation
“[m]ost of this progress is not just the result of more powerful hardware, larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and improved network architectures.” (Szegedy et al, 2014)
2 .可视化解读十种CNN框架
2.1 LeNet-5(1998)
LeNet-5 是最简单的框架之一,由2个卷积层和三个全连接层组成(因此叫做”5“——这种使用据卷积层和全连接层的数量来命名是一种很常普遍的做法)
创新点:
这个模型成为了一个标准”模板“:堆叠卷积层和池化层,最后以一层或者多层的全连接层结尾。
发表:
- Paper: Gradient-Based Learning Applied to Document Recognition
- Authors: Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner
- Published in: Proceedings of the IEEE (1998)
2.2 AlexNet(2012)
参数量60M的AlexNet有八层网络——5层卷积核3层全连接层。
相比LeNet-5来说,AlexNet也不过是多了几层网络。作者在论文中提到,他们“在ImageNet子集上训练了到目前为止最大的神经网络之一”。
创新点:
- 第一次使用Rectified Linear Units (ReLUs) 作为激活函数
发表:
- Paper: ImageNet Classification with Deep Convolutional Neural Networks
- Authors: Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton. University of Toronto, Canada.
- Published in: NeurIPS 2012
2.3 VGG16(2014)
相信你也注意到了CNNs网络的层数变得越来越深。这是因为提升提升深度神经网络模型
性能最直接的方式就是提升它的大小(Szegedy et. al)。
VGG16由 Visual Geometry Group (VGG) 的人提出,它包含13个卷积层和3个全连接层,激活函数沿用的AlexNet的ReLU。
相比AlexNet,VGG16堆叠了更多地层,同时使用了更小的卷积核(2×2 and 3×3))。VGG16模型参数的大小是138M,同时需要500M的储存空间!他们也训练了另外一个网络:VGG19。
创新点:
- 正如上面提到的,使用了更深的网络(几乎是AlexNet的两倍)
发表: - Paper: Very Deep Convolutional Networks for Large-Scale Image Recognition
- Authors: Karen Simonyan, Andrew Zisserman. University of Oxford, UK.
- arXiv preprint, 2014
2.4 Inception-v1(2014)
注:这个模型的名称(Stem and Inception)并没有在这个版本使用,而是在其后续版本,Inception-v4 和 Inception-ResNets出来之后才这么叫。